Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Partially Monotonic Learning for Neural Networks

Publicações

Partially Monotonic Learning for Neural Networks

Título
Partially Monotonic Learning for Neural Networks
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2021
Autores
Trindade, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Vinagre, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Fernandes, K
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Paiva, N
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Jorge, AM
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Ata de Conferência Internacional
Páginas: 12-23
19th International Symposium on Intelligent Data Analysis (IDA)
ELECTR NETWORK, APR 26-28, 2021
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00T-RWS
Abstract (EN): In the past decade, we have witnessed the widespread adoption of Deep Neural Networks (DNNs) in several Machine Learning tasks. However, in many critical domains, such as healthcare, finance, or law enforcement, transparency is crucial. In particular, the lack of ability to conform with prior knowledge greatly affects the trustworthiness of predictive models. This paper contributes to the trustworthiness of DNNs by promoting monotonicity. We develop a multi-layer learning architecture that handles a subset of features in a dataset that, according to prior knowledge, have a monotonic relation with the response variable. We use two alternative approaches: (i) imposing constraints on the model's parameters, and (ii) applying an additional component to the loss function that penalises non-monotonic gradients. Our method is evaluated on classification and regression tasks using two datasets. Our model is able to conform to known monotonic relations, improving trustworthiness in decision making, while simultaneously maintaining small and controllable degradation in predictive ability.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-24 às 01:50:01 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias