Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Decoding Reinforcement Learning for newcomers

Publicações

Decoding Reinforcement Learning for newcomers

Título
Decoding Reinforcement Learning for newcomers
Tipo
Outras Publicações
Ano
2022
Autores
Neves, F
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
F. Reis, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Andrade, G
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pinto, AM
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Outras Informações
ID Authenticus: P-00X-HZF
Abstract (EN): <jats:p><p>An intelligible step-by-step Reinforcement Learning (RL) problem formulation and the availability of an easy-to-use demonstrative toolbox for students at various levels (e.g., undergraduate, bachelor, master, doctorate), researchers and educators. This tool facilitates the familiarization with the key concepts of RL, its problem formulation and implementation. The results demonstrated in this paper are produced by a Python program that is released open-source, along with other lecture materials to reduce the learning barriers in such innovative research topic in robotics.</p> <p>The RL paradigm is showing promising results as a generic purpose framework for solving decision-making problems (e.g., robotics, games, finance). In this work, RL is used for solving a robotics 2D navigational problem where the robot needs to avoid collisions with obstacles while aiming to reach a goal point. A navigational problem is simple and convenient for educational purposes, since the outcome is unambiguous (e.g., the goal is reached or not, a collision happened or not). Thus, the intent is to accelerate the adoption of RL techniques in the field of mobile robotics.</p> <p>Motivate and promote the adoption of RL techniques to solve decision-making problems, specifically in robotics. </p> <p>Due to a lack of accessible educational and demonstrative toolboxes concerning the field of RL, this work combines theoretical exposition with an accessible open-source graphical interactive toolbox to facilitate the apprehension.</p> <p>This study aims to reduce the learning barriers and inspire young students, researchers and educators to use RL as an obvious tool to solve robotics problems.</p></jats:p>
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-23 às 13:05:13 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico