Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Mining Exceptional Social Behaviour

Publicações

Mining Exceptional Social Behaviour

Título
Mining Exceptional Social Behaviour
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2019
Autores
Jorge, CC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Atzmueller, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Heravi, BM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Gibson, JL
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
de Sá, CR
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ata de Conferência Internacional
Páginas: 460-472
EPIA Conference on Artificial Intelligence
Vila Real, Setembro 2019
Indexação
Outras Informações
ID Authenticus: P-00R-4MG
Abstract (EN): Essentially, our lives are made of social interactions. These can be recorded through personal gadgets as well as sensors adequately attached to people for research purposes. In particular, such sensors may record real time location of people. This location data can then be used to infer interactions, which may be translated into behavioural patterns. In this paper, we focus on the automatic discovery of exceptional social behaviour from spatio-temporal data. For that, we propose a method for Exceptional Behaviour Discovery (EBD). The proposed method combines Subgroup Discovery and Network Science techniques for finding social behaviour that deviates from the norm. In particular, it transforms movement and demographic data into attributed social interaction networks, and returns descriptive subgroups. We applied the proposed method on two real datasets containing location data from children playing in the school playground. Our results indicate that this is a valid approach which is able to obtain meaningful knowledge from the data. © 2019, Springer Nature Switzerland AG.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-05 às 05:58:50 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias