Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Traffic State Prediction Using One-Dimensional Convolution Neural Networks and Long Short-Term Memory

Publicações

Traffic State Prediction Using One-Dimensional Convolution Neural Networks and Long Short-Term Memory

Título
Traffic State Prediction Using One-Dimensional Convolution Neural Networks and Long Short-Term Memory
Tipo
Artigo em Revista Científica Internacional
Ano
2022-05
Autores
Selim Reza
(Autor)
Outra
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
Marta Campos Ferreira
(Autor)
FEUP
José J. M. Machado
(Autor)
FEUP
João Manuel R. S. Tavares
(Autor)
FEUP
Revista
Título: Applied SciencesImportada do Authenticus Pesquisar Publicações da Revista
Vol. 62
Páginas: 1-5149
Editora: MDPI
Indexação
Classificação Científica
CORDIS: Ciências Tecnológicas
FOS: Ciências da engenharia e tecnologias
Outras Informações
ID Authenticus: P-00W-KJW
Resumo (PT):
Abstract (EN): Traffic prediction is a vitally important keystone of an intelligent transportation system (ITS). It aims to improve travel route selection, reduce overall carbon emissions, mitigate congestion, and enhance safety. However, efficiently modelling traffic flow is challenging due to its dynamic and non-linear behaviour. With the availability of a vast number of data samples, deep neural network-based models are best suited to solve these challenges. However, conventional network-based models lack robustness and accuracy because of their incapability to capture traffic's spatial and temporal correlations. Besides, they usually require data from adjacent roads to achieve accurate predictions. Hence, this article presents a one-dimensional (1D) convolution neural network (CNN) and long short-term memory (LSTM)-based traffic state prediction model, which was evaluated using the Zenodo and PeMS datasets. The model used three stacked layers of 1D CNN, and LSTM with a logarithmic hyperbolic cosine loss function. The 1D CNN layers extract the features from the data, and the goodness of the LSTM is used to remember the past events to leverage them for the learnt features for traffic state prediction. A comparative performance analysis of the proposed model against support vector regression, standard LSTM, gated recurrent units (GRUs), and CNN and GRU-based models under the same conditions is also presented. The results demonstrate very encouraging performance of the proposed model, improving the mean absolute error, root mean squared error, mean percentage absolute error, and coefficient of determination scores by a mean of 16.97%, 52.1%, 54.15%, and 7.87%, respectively, relative to the baselines under comparison.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 18
Documentos
Nome do Ficheiro Descrição Tamanho
paper 1st Page 365.68 KB
applsci-12-05149 Paper 886.34 KB
Publicações Relacionadas

Dos mesmos autores

A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks (2022)
Artigo em Revista Científica Internacional
Selim Reza; Marta Campos Ferreira; José Joaquim M. Machado; João Manuel R. S. Tavares
A customized residual neural network and bi-directional gated recurrent unit-based automatic speech recognition model (2022)
Artigo em Revista Científica Internacional
Selim Reza; Marta Campos Ferreira; J.J.M. Machado; João Manuel R. S. Tavares
A citywide TD-learning based intelligent traffic signal control for autonomous vehicles: Performance evaluation using SUMO (2025)
Artigo em Revista Científica Internacional
Selim Reza; Marta Campos Ferreira; J. J. M. Machado; João Manuel R. S. Tavares

Da mesma revista

Wound Dressing Materials: Bridging Material Science and Clinical Practice (2025)
Outra Publicação em Revista Científica Internacional
Ferraz, MP
Viscoelasticity: Mathematical Modelling, Numerical Simulations, and Experimental Work (2023)
Outra Publicação em Revista Científica Internacional
Ferras, LL; Afonso, AM
Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges (2021)
Outra Publicação em Revista Científica Internacional
Gonçalves, I; Souza, R; Coutinho, G; Miranda, JM; Moita, A; Pereira, JE; Moreira, A; Lima, R
Theories and Analysis of Functionally Graded Beams (2021)
Outra Publicação em Revista Científica Internacional
J. N. Reddy; Eugenio Ruocco; Jose A. Loya; Ana M. A. Neves
The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis (2024)
Outra Publicação em Revista Científica Internacional
Oliveira, WD; de Brito, LP; de Souza, EAG; Lopes, IL; de Oliveira, CA; Calaça, PRD; M B P P Oliveira; Costa, ED

Ver todas (287)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-30 às 03:09:21 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias