Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > CP and MIP in the resolution of hard combinatorial problems : a case study with nesting problems

Publicações

CP and MIP in the resolution of hard combinatorial problems : a case study with nesting problems

Título
CP and MIP in the resolution of hard combinatorial problems : a case study with nesting problems
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2005
Ata de Conferência Internacional
Páginas: 113-127
Joint ERCIM/CoLogNET International Workshop on Constraint Solving and Constraint Logic Programming
Uppsala, Sweden, 20 a 22 de Junho de 2005
Classificação Científica
CORDIS: Ciências Físicas > Ciência de computadores > Informática ; Ciências Físicas > Matemática > Matemática aplicada > Investigação operacional
Outras Informações
Abstract (EN): Mixed Integer Programming (MIP) is a well-established approach to the optimization of combinatorial problems. The complexity of MIP models restricts their application to small-sized instances. For larger instances heuristic methods provide satisfactory solutions in many application domains. Constraint Programming (CP) has also addressed the resolution of combinatorial optimization problems. The CP paradigm is appropriate for representing the constraints that characterize problem solutions as well as for programming resolution strategies. A CP program can be regarded as a flexible problem model that can be used both for optimization and for applying heuristic methods. The integration of CP and MIP has been explored to take advantage of the feasibility-oriented features of CP together with the optimization-oriented behavior of MIP. The integration strategy depends on the problem nature and typically requires some insight on the communication between the two models. Nesting problems are NP-hard combinatorial problems where polygon-shaped pieces are placed over a plate; the goal is to minimize the length of the resulting layout. The problem has been addressed via MIP and heuristic methods in the OR community. The solution via CP models has also been studied. Nesting problems are particularly demanding in what concerns modelling: the natural problem variables are points in a two-dimensional space that make constraint propagation hard; it is also hard to predict for a partial solution its potential for being part of a compact layout. As a first step in exploring hybrid CP/MIP models for nesting problems, we present a case study where MIP and CP models are compared in a nesting problem instance with convex pieces. We then propose a hybrid approach to nesting problems combining a modified CP approach and LP optimization.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 15
Documentos
Não foi encontrado nenhum documento associado à publicação com acesso permitido.
Publicações Relacionadas

Dos mesmos autores

Planeamento agregado da produção em CLP (1999)
Relatório Técnico
Maria Antónia Carravilla; Maria Cristina Ribeiro
Demand uncertainty for the location-routing problem with two-dimensional loading constraints (2016)
Capítulo ou Parte de Livro
de Queiroz, TA; José Fernando Oliveira; José Fernando Oliveira; Maria Antónia Carravilla; Maria Antónia Carravilla; Miyazawa, FK; Miyazawa, FK
A MIP model for production planning in the roasting coffee industry (2016)
Capítulo ou Parte de Livro
Ospina, DY; Maria Antónia Carravilla; Maria Antónia Carravilla; José Fernando Oliveira; José Fernando Oliveira
The Dotted-Board Model: A new MIP model for nesting irregular shapes (2013)
Artigo em Revista Científica Internacional
Franklina M B Toledo; Maria Antonia Carravilla; Cristina Ribeiro; Jose F Oliveira; Miguel M Gomes

Ver todas (15)

Das mesmas áreas científicas

A global constraint for nesting problems (2004)
Artigo em Livro de Atas de Conferência Internacional
Cristina Ribeiro; Maria Antónia Carravilla
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-29 às 10:01:24 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico