Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Mapping Uncertainties of Soft-Sensors Based on Deep Feedforward Neural Networks through a Novel Monte Carlo Uncertainties Training Process

Publicações

Mapping Uncertainties of Soft-Sensors Based on Deep Feedforward Neural Networks through a Novel Monte Carlo Uncertainties Training Process

Título
Mapping Uncertainties of Soft-Sensors Based on Deep Feedforward Neural Networks through a Novel Monte Carlo Uncertainties Training Process
Tipo
Artigo em Revista Científica Internacional
Ano
2022
Autores
Costa, EA
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Rebello, CM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Santana, VV
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Rodrigues, AE
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ana M. Ribeiro
(Autor)
FEUP
Schnitman, L
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Nogueira, IBR
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Revista
A Revista está pendente de validação pelos Serviços Administrativos.
Título: PROCESSESImportada do Authenticus Pesquisar Publicações da Revista
Página Final: 409
ISSN: 2227-9717
Outras Informações
ID Authenticus: P-00W-51W
Abstract (EN): Data-driven sensors are techniques capable of providing real-time information of unmeasured variables based on instrument measurements. They are valuable tools in several engineering fields, from car automation to chemical processes. However, they are subject to several sources of uncertainty, and in this way, they need to be able to deal with uncertainties. A way to deal with this problem is by using soft sensors and evaluating their uncertainties. On the other hand, the advent of deep learning (DL) has been providing a powerful tool for the field of data-driven modeling. The DL presents a potential to improve the soft sensor reliability. However, the uncertainty identification of the soft sensors model is a known issue in the literature. In this scenario, this work presents a strategy to identify the uncertainty of DL models prediction based on a novel Monte Carlo uncertainties training strategy. The proposed methodology is applied to identify a Soft Sensor to provide a real-time prediction of the productivity of a chemical
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 16
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis (2020)
Outra Publicação em Revista Científica Internacional
Restivo, J; O.S.G.P. Soares; Manuel Fernando R Pereira
The Effect of Air Relative Humidity on the Drying Process of Sanitary Ware at Low Temperature: An Experimental Study (2023)
Artigo em Revista Científica Internacional
J.M.P.Q. Delgado; R.S. Gomez; K.C. Gomes; J.M.A.M. Gurgel; L.B. Alves; R.A. Queiroga; H.L.F. Magalhães; E.J.C. Silva; L.S.S. Pinheiro; D.S. Oliveira; H.W.D. Moreira; H.C. Brito
Stir Casting Routes for Processing Metal Matrix Syntactic Foams: A Scoping Review (2022)
Artigo em Revista Científica Internacional
de la Muela, AMS; Duarte, J; João Santos Baptista; Cambronero, LEG; Ruiz-Roman, JM; Elorza, FJ
Static Light Scattering Monitoring and Kinetic Modeling of Polyacrylamide Hydrogel Synthesis (2019)
Artigo em Revista Científica Internacional
Mário Rui P. F. N. Costa; Catarina Gomes; Rolando C. S. Dias

Ver todas (33)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-07 às 19:34:16 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias