Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Land surface temperature algorithm calibration through meteorological stations

Publicações

Land surface temperature algorithm calibration through meteorological stations

Título
Land surface temperature algorithm calibration through meteorological stations
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2021
Autores
Oliveira, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ana Teodoro
(Autor)
FCUP
Freitas A
(Autor)
FMUP
Ata de Conferência Internacional
Conference on Earth Resources and Environmental Remote Sensing/GIS Applications XII / SPIE Remote Sensing Conference
ELECTR NETWORK, SEP 13-18, 2021
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00V-PE2
Resumo (PT):
Abstract (EN): This methodologic paper arises from the necessity to gather Land Surface Temperature (LST) data over a relatively large period and territory: 2000-2018, Portugal. The computational power required to complete this task was found to be a major barrier. However, platforms such as Google Earth Engine (GEE) offer a vast data archive freely accessible through a web interactive development environment or an application programming interface, namely, Python's API. Additionally, the computation using GEE is hosted in Google's servers, drastically reducing the processing times. However, computing LST through Landsat-7 satellite imagery resulted on a difference of -8 degrees C +/- 6 degrees C compared to the values from meteorological ground stations. As such, this paper aims to further calibrate computed LST through meteorological stations and make the methodology and corresponding code available, thus encouraging cooperation on the development and integration of local calibration methods. A sensitivity analysis of the representativeness of each station was performed using three methods of temperature extraction: station coordinate's pixel, buffers around the station, and surrounding soil occupation (identifying the area with the same soil occupation as the station's location). Pearson's correlation coefficient was on average significant at 0.81 in the raw data and increased to 0.89 after clearing data from outliers. The best representativeness method for meteorologic stations was the one based on soil occupation, which resulted on a Pearson's r of 0.91. As a result, we advise researchers to complement their remote sensing work with ground data whenever possible through the usage of a method like the one here described.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 19
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Geospatial analysis of environmental atmospheric risk factors in neurodegenerative diseases: a systematic review update (2024)
Outra Publicação em Revista Científica Internacional
Oliveira, M; Padrao, A; Ana Teodoro; Freitas A; Hernani Goncalves
Geospatial Analysis of Environmental Atmospheric Risk Factors in Neurodegenerative Diseases: A Systematic Review (2020)
Artigo em Revista Científica Internacional
Oliveira, M; Padrao, A; Ramalho, A; Lobo, M; Ana Teodoro; Hernani Goncalves; Freitas A
Spatial Patterns in Neurodegenerative Disease¿s Hospitalizations in Portugal (2000-2016) (2023)
Artigo em Livro de Atas de Conferência Internacional
Oliveira, M; Freitas A; Ana Teodoro; Hernani Goncalves
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-10-25 às 20:09:21 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico