Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Causality assessment of adverse drug reaction reports using an expert-defined Bayesian network

Publicações

Causality assessment of adverse drug reaction reports using an expert-defined Bayesian network

Título
Causality assessment of adverse drug reaction reports using an expert-defined Bayesian network
Tipo
Artigo em Revista Científica Internacional
Ano
2018
Autores
Ferreira Santos, D
(Autor)
FMUP
Silva, A
(Autor)
FMUP
Polonia, J
(Autor)
Outra
RIbeiro-Vaz, I
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Revista
Vol. 91
Páginas: 12-22
ISSN: 0933-3657
Editora: Elsevier
Outras Informações
ID Authenticus: P-00P-ZQC
Resumo (PT):
Abstract (EN): In pharmacovigilance, reported cases are considered suspected adverse drug reactions (ADR). Health authorities have thus adopted structured causality assessment methods, allowing the evaluation of the likelihood that a drug was the causal agent of an adverse reaction. The aim of this work was to develop and validate a new causality assessment support system used in a regional pharmacovigilance centre. A Bayesian network was developed, for which the structure was defined by experts while the parameters were learnt from 593 completely filled ADR reports evaluated by the Portuguese Northern Pharmacovigilance Centre medical expert between 2000 and 2012. Precision, recall and time to causality assessment (TTA) was evaluated, according to the WHO causality assessment guidelines, in a retrospective cohort of 466 reports (April-September 2014) and a prospective cohort of 1041 reports (January-December 2015). Additionally, a simplified assessment matrix was derived from the model, enabling its preliminary direct use by notifiers. Results show that the network was able to easily identify the higher levels of causality (recall above 80%), although struggling to assess reports with a lower level of causality. Nonetheless, the median (Q1:Q3) ITA was 4 (2:8) days using the network and 8 (5:14) days using global introspection, meaning the network allowed a faster time to assessment, which has a procedural deadline of 30 days, improving daily activities in the centre. The matrix expressed similar validity, allowing an immediate feedback to the notifiers, which may result in better future engagement of patients and health professionals in the pharmacovigilance system.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 11
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Autonomous agents and multi-agent systems applied in healthcare (2019)
Outra Publicação em Revista Científica Internacional
Montagna, S; Daniel Castro Silva; Pedro Henriques Abreu; Ito, M; Schumacher, MI; Vargiu, E
Towards an intelligent medical system for the aesthetic evaluation of breast cancer conservative treatment (2007)
Artigo em Revista Científica Internacional
Jaime S Cardso; Maria J Cardos
STERN: Attention-driven Spatial Transformer Network for abnormality detection in chest X-ray images (2024)
Artigo em Revista Científica Internacional
Rocha, J; Pereira, SC; Pedrosa, J; Aurélio Campilho; Ana Maria Mendonça
Automated image label extraction from radiology reports - A review (2024)
Artigo em Revista Científica Internacional
Pereira, SC; Ana Maria Mendonça; Aurélio Campilho; Sousa, P; Carla Teixeira Lopes
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-23 às 10:33:40 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico