Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > A fine Grained Heuristics to Capture Web Navigation Patterns

Publicações

A fine Grained Heuristics to Capture Web Navigation Patterns

Título
A fine Grained Heuristics to Capture Web Navigation Patterns
Tipo
Artigo em Revista Científica Internacional
Ano
2000
Autores
José Borges
(Autor)
FEUP
Mark Levene
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 2 1
Páginas: 40-50
ISSN: 1931-0145
Indexação
Publicação em ISI Web of Science ISI Web of Science
Outras Informações
Resumo (PT):
Abstract (EN): In previous work we have proposed a statistical model to capture the user behaviour when browsing the web. The user navigation information, obtained from web logs, is modelled as a hypertext probabilistic grammar (HPG) which is within the class of regular probabilistic grammars. The set of highest probability strings generated by the grammar corresponds to the user preferred navigation trails. We have previously conducted experiments with a Breadth-First Search algorithm (BFS) to perform the exhaustive computation of all the strings with probability above a specified cut-point, which we call the rules. Although the algorithm's running time varies linearly with the number of grammar states, it has the drawbacks of returning a large number of rules when the cut-point is small and a small set of very short rules when the cut-point is high. In this work, we present a new heuristic that implements an iterative deepening search wherein the set of rules is incrementally augmented by first exploring trails with high probability. A stopping parameter is provided which measures the distance between the current rule-set and its corresponding maximal set obtained by the BFS algorithm. When the stopping parameter takes the value zero the heuristic corresponds to the BFS algorithm and as the parameter takes values closer to one the number of rules obtained decreases accordingly. Experiments were conducted with both real and synthetic data and the results show that for a given cut-point the number of rules induced increases smoothly with the decrease of the stopping criterion. Therefore, by setting the value of the stopping criterion the analyst can determine the number and quality of rules to be induced; the quality of a rule is measured by both its length and probability.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 11
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Data Mining of User Navigation Patterns (2000)
Capítulo ou Parte de Livro
José Borges; Mark Levene
Zipf's law for web surfers (2001)
Artigo em Revista Científica Internacional
Mark Levene; José Borges; George Loizou
Testing the predictive power of variable history web usage (2007)
Artigo em Revista Científica Internacional
José Luís Moura Borges; Mark Levene
Ranking pages by topology and popularity within web sites (2006)
Artigo em Revista Científica Internacional
José Luís Moura Borges; Mark Levene
Evaluating Variable Length Markov Chain Models for Analysis of User Web Navigation Sessions (2007)
Artigo em Revista Científica Internacional
José Luís Moura Borges; Mark Levene

Ver todas (10)

Da mesma revista

OpenML: networked science in machine learning (2013)
Artigo em Revista Científica Internacional
Joaquin Vanschoren; Jan van v Rijn; Bernd Bischl; Luis Torgo
Open challenges for Machine Learning based Early Decision-Making research (2022)
Artigo em Revista Científica Internacional
Bondu, A; Achenchabe, Y; Bifet, A; Clérot, F; Cornuéjols, A; João Gama; Hébrail, G; Lemaire, V; Marteau, PF
Next challenges for adaptive learning systems (2012)
Artigo em Revista Científica Internacional
Indre Zliobaite; Albert Bifet; Mohamed Gaber; Bogdan Gabrys; João Gama; Leandro Minku; Katarzyna Musial
Machine learning for streaming data: state of the art, challenges, and opportunities (2019)
Artigo em Revista Científica Internacional
Gomes, HM; Read, J; Bifet, A; Barddal, JP; João Gama
Knowledge discovery from sensor data (SensorKDD) (2009)
Artigo em Revista Científica Internacional
Olufemi A. Omitaomu; Ranga Raju Vatsavai; Auroop R. Ganguly; Nitesh V. Chawla; João Gama; Mohamed Medhat Gaber

Ver todas (9)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-10-12 às 21:09:12 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico