Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Learning model trees from evolving data streams

Publicações

Learning model trees from evolving data streams

Título
Learning model trees from evolving data streams
Tipo
Artigo em Revista Científica Internacional
Ano
2011
Autores
Elena Ikononmosvka
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Saso Dzeroski
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 23
Páginas: 128-168
ISSN: 1384-5810
Editora: Springer Nature
Indexação
Classificação Científica
FOS: Ciências exactas e naturais > Ciências da computação e da informação
CORDIS: Ciências Físicas > Ciência de computadores
Outras Informações
ID Authenticus: P-002-QC1
Abstract (EN): The problem of real-time extraction of meaningful patterns from time-changing data streams is of increasing importance for the machine learning and data mining communities. Regression in time-changing data streams is a relatively unexplored topic, despite the apparent applications. This paper proposes an efficient and incremental stream mining algorithm which is able to learn regression and model trees from possibly unbounded, high-speed and time-changing data streams. The algorithm is evaluated extensively in a variety of settings involving artificial and real data. To the best of our knowledge there is no other general purpose algorithm for incremental learning regression/model trees able to perform explicit change detection and informed adaptation. The algorithm performs online and in real-time, observes each example only once at the speed of arrival, and maintains at any-time a ready-to-use model tree. The tree leaves contain linear models induced online from the examples assigned to them, a process with low complexity. The algorithm has mechanisms for drift detection and model adaptation, which enable it to maintain accurate and updated regression models at any time. The drift detection mechanism exploits the structure of the tree in the process of local change detection. As a response to local drift, the algorithm is able to update the tree structure only locally. This approach improves the any-time performance and greatly reduces the costs of adaptation.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 41
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Das mesmas áreas científicas

On Applying Linear Tabling to Logic Programs (2010)
Tese
MIGUEL AREIAS; Ricardo Rocha
APRIORI Algorithm for Label Ranking (2010)
Tese
Cláudio Sá; Carlos Soares; Joaquim Costa
On the average size of pd automata: an analytic combinatorics approach (2010)
Relatório Técnico
Sabine Broda; António Machiavelo; Nelma Moreira; Rogério Reis
On Covering Path Orthogonal Polygons (preliminary version) (2016)
Relatório Técnico
Ana Paula Tomás; Catarina Lobo Ferreira

Ver todas (138)

Da mesma revista

Guest editors introduction: special issue of the ECMLPKDD 2015 journal track (2015)
Outra Publicação em Revista Científica Internacional
Bielza, C; João Gama; Jorge, AM; Zliobaite, I
Guest Editorial: Special Issue on Data Mining for Geosciences (2019)
Outra Publicação em Revista Científica Internacional
Jorge, AM; Lopes, RL; Larrazabal, G; Nikhalat Jahromi, H
Very fast decision rules for classification in data streams (2015)
Artigo em Revista Científica Internacional
Kosina, P; João Gama
Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality (2015)
Artigo em Revista Científica Internacional
Carlos Saez; Pedro Pereira Rodrigues; João Gama; Montserrat Robles; Juan M Garcia Gomez
Novel features for time series analysis: a complex networks approach (2022)
Artigo em Revista Científica Internacional
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F

Ver todas (14)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-30 às 03:36:58 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias