Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > EKF design for online trajectory prediction of a moving object detected onboard of a UAV

Publicações

EKF design for online trajectory prediction of a moving object detected onboard of a UAV

Título
EKF design for online trajectory prediction of a moving object detected onboard of a UAV
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2018
Autores
Pinto, MF
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Coelho, FO
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
De Souza, JPC
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Melo, AG
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Marcato, ALM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Urdiales, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Indexação
Outras Informações
ID Authenticus: P-00S-0PY
Abstract (EN): The applications with Unmanned Aerial Vehicles have increased in the last decades due to their economic and technical feasibility. Moreover, several tasks require online objects tracking as well as the object position knowledge in the real-world with algorithms execution onboard. An example of such task is the video surveillance with human activity recognition. In this paper, we propose a new approach using Extended Kalman Filter to estimate and to predict the object real-world coordinates. This research shows that the results were up to 30% better compared to the results without data processing. © 2018 IEEE.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-11 às 20:19:00 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico