Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > A density-based clustering approach for behavior change detection in data streams

Publicações

A density-based clustering approach for behavior change detection in data streams

Título
A density-based clustering approach for behavior change detection in data streams
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2012
Autores
Rosane Mafei
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Andre Carvalho
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
José Filho
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Ata de Conferência Internacional
Páginas: 37-42
2012 Brazilian Conference on Neural Networks, SBRN 2012
Curitiba, Parana, 20 October 2012 through 25 October 2012
Indexação
Classificação Científica
FOS: Ciências exactas e naturais > Ciências da computação e da informação
CORDIS: Ciências Físicas > Ciência de computadores
Outras Informações
ID Authenticus: P-008-918
Abstract (EN): Mining data streams poses many challenges to existing Machine Learning algorithms. Algorithms designed to learn in this scenario need to constantly update their decision models in accordance with current data behavior. Therefore, the ability to detect when the behavior of the stream is changing is an important feature of any learning technique approaching data streams. This work is concerned with unsupervised behavior change detection. It suggests the use of density-based clustering and an entropy measurement for change detection that is independent of the number and format of clusters. The proposed approach uses a modified version of the Den Stream algorithm that is designed to better cope with the entropy calculation. Experimental results using synthetic data provide insight on how clustering and novelty detection algorithms can be used for change detection in data streams. © 2012 IEEE.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Das mesmas áreas científicas

On Applying Linear Tabling to Logic Programs (2010)
Tese
MIGUEL AREIAS; Ricardo Rocha
APRIORI Algorithm for Label Ranking (2010)
Tese
Cláudio Sá; Carlos Soares; Joaquim Costa
On the average size of pd automata: an analytic combinatorics approach (2010)
Relatório Técnico
Sabine Broda; António Machiavelo; Nelma Moreira; Rogério Reis
On Covering Path Orthogonal Polygons (preliminary version) (2016)
Relatório Técnico
Ana Paula Tomás; Catarina Lobo Ferreira

Ver todas (138)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-25 às 17:57:12 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico