Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Machine Learning and Feature Selection Methods for EGFR Mutation Status Prediction in Lung Cancer

Publicações

Machine Learning and Feature Selection Methods for EGFR Mutation Status Prediction in Lung Cancer

Título
Machine Learning and Feature Selection Methods for EGFR Mutation Status Prediction in Lung Cancer
Tipo
Artigo em Revista Científica Internacional
Ano
2021
Autores
Morgado, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Pereira, T
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Silva, F
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Freitas, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Negrao, E
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
de Lima, BF
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
da Silva, MC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
António Madureira
(Autor)
FMUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Ramos, I
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Costa, JL
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Cunha, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Revista
Título: Applied SciencesImportada do Authenticus Pesquisar Publicações da Revista
Vol. 11
Página Final: 3273
Editora: MDPI
Outras Informações
ID Authenticus: P-00T-QN5
Abstract (EN): The evolution of personalized medicine has changed the therapeutic strategy from classical chemotherapy and radiotherapy to a genetic modification targeted therapy, and although biopsy is the traditional method to genetically characterize lung cancer tumor, it is an invasive and painful procedure for the patient. Nodule image features extracted from computed tomography (CT) scans have been used to create machine learning models that predict gene mutation status in a noninvasive, fast, and easy-to-use manner. However, recent studies have shown that radiomic features extracted from an extended region of interest (ROI) beyond the tumor, might be more relevant to predict the mutation status in lung cancer, and consequently may be used to significantly decrease the mortality rate of patients battling this condition. In this work, we investigated the relation between image phenotypes and the mutation status of Epidermal Growth Factor Receptor (EGFR), the most frequently mutated gene in lung cancer with several approved targeted-therapies, using radiomic features extracted from the lung containing the nodule. A variety of linear, nonlinear, and ensemble predictive classification models, along with several feature selection methods, were used to classify the binary outcome of wild-type or mutant EGFR mutation status. The results show that a comprehensive approach using a ROI that included the lung with nodule can capture relevant information and successfully predict the EGFR mutation status with increased performance compared to local nodule analyses. Linear Support Vector Machine, Elastic Net, and Logistic Regression, combined with the Principal Component Analysis feature selection method implemented with 70% of variance in the feature set, were the best-performing classifiers, reaching Area Under the Curve (AUC) values ranging from 0.725 to 0.737. This approach that exploits a holistic analysis indicates that information from more extensive regions of the lung containing the nodule allows a more complete lung cancer characterization and should be considered in future radiogenomic studies.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges (2022)
Artigo em Revista Científica Internacional
Silva, F; Pereira, T; Neves, I; Morgado, J; Freitas, C; Malafaia, M; Sousa, J; Fonseca, J; Negrao, E; de Lima, BF; da Silva, MC; António Madureira; Ramos, I; Costa, JL; Hespanhol V; Cunha, A; Oliveira, HP
Sharing Biomedical Data: Strengthening AI Development in Healthcare (2021)
Artigo em Revista Científica Internacional
Pereira, T; Morgado, J; Silva, F; Pelter, MM; Dias, VR; Barros, R; Freitas, C; Negrao, E; de Lima, BF; da Silva, MC; António Madureira; Ramos, I; Hespanhol V; Costa, JL; Cunha, A; Oliveira, HP
Comprehensive Perspective for Lung Cancer Characterisation Based on AI Solutions Using CT Images (2021)
Artigo em Revista Científica Internacional
Pereira, T; Freitas, C; Costa, JL; Morgado, J; Silva, F; Negrao, E; de Lima, BF; da Silva, MC; António Madureira; Ramos, I; Hespanhol V; Cunha, A; Oliveira, HP

Da mesma revista

Wound Dressing Materials: Bridging Material Science and Clinical Practice (2025)
Outra Publicação em Revista Científica Internacional
Ferraz, MP
Viscoelasticity: Mathematical Modelling, Numerical Simulations, and Experimental Work (2023)
Outra Publicação em Revista Científica Internacional
Ferras, LL; Afonso, AM
Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges (2021)
Outra Publicação em Revista Científica Internacional
Gonçalves, I; Souza, R; Coutinho, G; Miranda, JM; Moita, A; Pereira, JE; Moreira, A; Lima, R
Theories and Analysis of Functionally Graded Beams (2021)
Outra Publicação em Revista Científica Internacional
J. N. Reddy; Eugenio Ruocco; Jose A. Loya; Ana M. A. Neves
The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis (2024)
Outra Publicação em Revista Científica Internacional
Oliveira, WD; de Brito, LP; de Souza, EAG; Lopes, IL; de Oliveira, CA; Calaça, PRD; M B P P Oliveira; Costa, ED

Ver todas (293)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-20 às 02:43:10 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico