Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Spatial estimation of chronic respiratory diseases based on machine learning procedures-an approach using remote sensing data and environmental variables in quito, Ecuador

Publicações

Spatial estimation of chronic respiratory diseases based on machine learning procedures-an approach using remote sensing data and environmental variables in quito, Ecuador

Título
Spatial estimation of chronic respiratory diseases based on machine learning procedures-an approach using remote sensing data and environmental variables in quito, Ecuador
Tipo
Artigo em Revista Científica Internacional
Ano
2020
Autores
Alvarez Mendoza, CI
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ana Teodoro
(Autor)
FCUP
Freitas A
(Autor)
FMUP
Revista
Título: Applied GeographyImportada do Authenticus Pesquisar Publicações da Revista
Vol. 123
ISSN: 0143-6228
Editora: Elsevier
Outras Informações
ID Authenticus: P-00S-K0A
Resumo (PT):
Abstract (EN): Over the last few years, the use of remote sensing data in different applications such as estimation of air pollution concentration and health applications has become very popular and new. Thus, some studies have established a possible relationship between environmental variables and respiratory health parameters. This study proposes to estimate the prevalence of Chronic Respiratory Diseases, where there is a relationship between remote sensing data (Landsat 8) and environmental variables (air pollution and meteorological data) to determine the number of hospital discharges of patients with chronic respiratory diseases in Quito, Ecuador, between 2013 and 2017. The main objective of this study is to establish and evaluate an alternative LUR model that is capable of estimate the prevalence of chronic respiratory diseases, in contrast with traditional LUR models, which typically assess air pollutants. Moreover, this study also evaluates different analytic techniques (multiple linear regression, multilayer perceptron, support vector regression, and random forest regression) that often form the basis of spatial models. The results show that machine learning techniques, such as support vector machine, are the most effective in computing such models, presenting the lowest root-mean-square error (RMSE). Additionally, in this study, we show that the most significant remote sensing predictors are the blue and infrared bands. Our proposed model is a spatial modeling approach that is capable of determining the prevalence of chronic respiratory diseases in the city of Quito, which can serve as a useful tool for health authorities in policy- and decision-making.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 11
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Modeling the prevalence of respiratory chronic diseases risk using satellite images and environmental data (2019)
Artigo em Livro de Atas de Conferência Internacional
Alvarez Mendoza, CI; Ana Teodoro; Ordonez, J; Benitez, A; Freitas A; Fonseca, J

Da mesma revista

Seeking harmony in coastal development for small islands: Exploring multifunctional artificial reefs for Sao Miguel Island, the Azores (2013)
Artigo em Revista Científica Internacional
K. Ng; M. R. Phillips; H. Calado ; P. Borges; F. Veloso Gomes
Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal (2011)
Artigo em Revista Científica Internacional
Isabel Pÿças; Mario Cunha; Luis S Pereira
How can landscape visual assessment inform landscape planning and management? - Alto Douro Wine region case study, Portugal (2024)
Artigo em Revista Científica Internacional
Ana Medeiros; Cláudia Fernandes; João F. Gonçalves; Paulo Farinha Marques; Isabel Martinho da Silva
An investigation of the environmental determinants of asthma hospitalizations: An applied spatial approach (2014)
Artigo em Revista Científica Internacional
Diogo Ayres Sampaio; Ana C Teodoro; Neftali Sillero; Cristina Santos; Alberto Freitas; João Fonseca
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-08 às 06:46:24 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias