Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Forecasting of Urban Public Transport Demand Based on Weather Conditions

Publicações

Forecasting of Urban Public Transport Demand Based on Weather Conditions

Título
Forecasting of Urban Public Transport Demand Based on Weather Conditions
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2021
Autores
Ricardo Correia
(Autor)
Outra
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
José Luís Moura Borges
(Autor)
FEUP
Ata de Conferência Internacional
Páginas: 75-84
5th Conference on Sustainable Urban Mobility, CSUM 2020
17 June 2020 through 19 June 2020
Indexação
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00T-2J1
Resumo (PT):
Abstract (EN): Weather conditions have a major impact on citizens¿ daily mobility. Depending on weather conditions trips may be delayed, demand may be changed as well as the modal shift. These variations have a major impact on the use and operation of public transport, particularly in transport systems that operate close to capacity. However, the influence of weather conditions on transport demand is difficult to predict and quantify. For this purpose, an artificial neural network model ¿ the Multilayer Perceptron ¿ is used as a regression model to estimate the demand of urban public transport buses based on weather conditions. Transit bus ridership and weather conditions were collected along a year from a medium-size European metropolitan area (Oporto, Portugal) and linked under the assumption that individuals choose the travel mode based on the weather conditions that are observed during the departure hour, the hour before and two hours before. The transit ridership data were also labelled according to the hour, day of the week, month, and whether there was a strike and/or holiday or not. The results demonstrate that it is possible to predict the demand of public transport buses using the weather conditions observed two hours before with low error for the entire network (MAE = 143 and RMSE = 322). The use of weather conditions allow to decreases the error of the prediction by ~8% for the entire network. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 10
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-08-23 às 22:04:06 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias