Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > ML datasets as synthetic cognitive experience records

Publicações

ML datasets as synthetic cognitive experience records

Título
ML datasets as synthetic cognitive experience records
Tipo
Artigo em Revista Científica Internacional
Ano
2018
Autores
Castro, H
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Maria Teresa Andrade
(Autor)
FEUP
Indexação
Outras Informações
ID Authenticus: P-00Q-KMF
Abstract (EN): Machine Learning (ML), presently the major research area within Artificial Intelligence, aims at developing tools that can learn, approximately on their own, from data. ML tools learn, through a training phase, to perform some association between some input data and some output evaluation of it. When the input data is audio or visual media (i.e. akin to sensory information) and the output corresponds to some interpretation of it, the process may be described as Synthetic Cognition (SC). Presently ML (or SC) research is heterogeneous, comprising a broad set of disconnected initiatives which develop no systematic efforts for cooperation or integration of their achievements, and no standards exist to facilitate that. The training datasets (base sensory data and targeted interpretation), which are very labour intensive to produce, are also built employing ad-hoc structures and (metadata) formats, have very narrow expressive objectives and thus enable no true interoperability or standardisation. Our work contributes to overcome this fragility by putting forward: a specification for a standard ML dataset repository, describing how it internally stores the different components of datasets, and how it interfaces with external services; and a tool for the comprehensive structuring of ML datasets, defining them as Synthetic Cognitive Experience (SCE) records, which interweave the base audio-visual sensory data with multilevel interpretative information. A standardised structure to express the different components of the datasets and their interrelations will promote re-usability, resulting on the availability of a very large pool of datasets for a myriad of application domains. Our work thus contributes to: the universal interpretability and reusability of ML datasets; greatly easing the acquisition and sharing of training and testing datasets within the ML research community; facilitating the comparison of results from different ML tools; accelerating the overall research process. © MIR Labs.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

ESICM LIVES 2016: part two (2016)
Artigo em Revista Científica Internacional
Forsberg, M; Edman, G; Höjer, J; Forsberg, S; Freile, MTC; Hidalgo, FN; Molina, JAM; Lecumberri, R; Rosselló, AF; Travieso, PM; Leon, GT; Sanchez, JG; Frias, LS; Rosello, DB; Verdejo, JAG; Serrano, JAN; Winterwerp, D; van Galen, T; Vazin, A; Karimzade, I...(mais 2503 autores)
Digital forgetting in information-centric networks-the CONVERGENCE perspective (2014)
Artigo em Revista Científica Internacional
Fernando Almeida; Castro, H; Maria Teresa Andrade; Tropea, G; Melazzi, NB; Signorello, S; Mousas, A; Anadiotis, A; Kaklamani, D; Venieris, I; Minelli, S; Difino, A
A unified data model and system support for the context-aware access to multimedia content (2007)
Artigo em Livro de Atas de Conferência Internacional
Pedro Carvalho; Maria Teresa Andrade; Alberti, C; Castro, H; Calistru, C; Cuetos, Pd

Da mesma revista

Reliable P2P Content Delivery for Alternative Business Models (2013)
Artigo em Revista Científica Internacional
Helder Castro; Artur Pimenta Alves; Maria T. Andrade
ML datasets as synthetic cognitive experience records (2018)
Artigo em Revista Científica Internacional
M. T. Andrade; H. Castro
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-24 às 20:46:48 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias