Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Deep Learning for Underwater Visual Odometry Estimation

Publicações

Deep Learning for Underwater Visual Odometry Estimation

Título
Deep Learning for Underwater Visual Odometry Estimation
Tipo
Artigo em Revista Científica Internacional
Ano
2020
Autores
Bernardo Teixeira
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Hugo Silva
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Aníbal Matos
(Autor)
FEUP
Revista
Título: IEEE AccessImportada do Authenticus Pesquisar Publicações da Revista
Vol. 8
Páginas: 44687-44701
ISSN: 2169-3536
Editora: IEEE
Outras Informações
ID Authenticus: P-00R-TCZ
Abstract (EN): This paper addresses Visual Odometry (VO) estimation in challenging underwater scenarios. Robot visual-based navigation faces several additional difficulties in the underwater context, which severely hinder both its robustness and the possibility for persistent autonomy in underwater mobile robots using visual perception capabilities. In this work, some of the most renown VO and Visual Simultaneous Localization and Mapping (v-SLAM) frameworks are tested on underwater complex environments, assessing the extent to which they are able to perform accurately and reliably on robotic operational mission scenarios. The fundamental issue of precision, reliability and robustness to multiple different operational scenarios, coupled with the rise in predominance of Deep Learning architectures in several Computer Vision application domains, has prompted a great a volume of recent research concerning Deep Learning architectures tailored for visual odometry estimation. In this work, the performance and accuracy of Deep Learning methods on the underwater context is also benchmarked and compared to classical methods. Additionally, an extension of current work is proposed, in the form of a visual-inertial sensor fusion network aimed at correcting visual odometry estimate drift. Anchored on a inertial supervision learning scheme, our network managed to improve upon trajectory estimates, producing both metrically better estimates as well as more visually consistent trajectory shape mimicking.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 15
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Deep Learning Approaches Assessment for Underwater Scene Understanding and Egomotion Estimation (2019)
Artigo em Livro de Atas de Conferência Internacional
Bernardo Teixeira; Hugo Silva; Aníbal Matos; Eduardo Silva

Da mesma revista

Understanding Business Models for the Adoption of Electric Vehicles and Charging Stations: Challenges and Opportunities in Brazil (2023)
Outra Publicação em Revista Científica Internacional
Bitencourt, L; Dias, B; Soares, T; Borba, B; Quirós Tortós, J; Costa, V
Space Imaging Point Source Detection and Characterization (2024)
Outra Publicação em Revista Científica Internacional
Ribeiro, FSF; P. J. V. Garcia; Silva, M; Jaime S Cardoso
Key Indicators to Assess the Performance of LiDAR-Based Perception Algorithms: A Literature Review (2023)
Outra Publicação em Revista Científica Internacional
José Machado da Silva; K. Chiranjeevi; Correia, M. V.
IEEE ACCESS SPECIAL SECTION EDITORIAL: SOFT COMPUTING TECHNIQUES FOR IMAGE ANALYSIS IN THE MEDICAL INDUSTRY - CURRENT TRENDS, CHALLENGES AND SOLUTIONS (2018)
Outra Publicação em Revista Científica Internacional
D. Jude Hemanth; Lipo Wang; João Manuel R. S. Tavares; Fuqian Shi; Vania Vieira Estrela
Generating Synthetic Missing Data: A Review by Missing Mechanism (2019)
Outra Publicação em Revista Científica Internacional
Santos, MS; Pereira, RC; Costa, AF; Soares, JP; Santos, J; Pedro Henriques Abreu

Ver todas (109)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-03 às 14:28:45 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias