Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > ML datasets as synthetic cognitive experience records

Publicações

ML datasets as synthetic cognitive experience records

Título
ML datasets as synthetic cognitive experience records
Tipo
Artigo em Revista Científica Internacional
Ano
2018
Autores
M. T. Andrade
(Autor)
FEUP
H. Castro
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
Indexação
Outras Informações
ID Authenticus: P-00Q-KMF
Abstract (EN): Machine Learning (ML), presently the major research area within Artificial Intelligence, aims at developing tools that can learn, approximately on their own, from data. ML tools learn, through a training phase, to perform some association between some input data and some output evaluation of it. When the input data is audio or visual media (i.e. akin to sensory information) and the output corresponds to some interpretation of it, the process may be described as Synthetic Cognition (SC). Presently ML (or SC) research is heterogeneous, comprising a broad set of disconnected initiatives which develop no systematic efforts for cooperation or integration of their achievements, and no standards exist to facilitate that. The training datasets (base sensory data and targeted interpretation), which are very labour intensive to produce, are also built employing ad-hoc structures and (metadata) formats, have very narrow expressive objectives and thus enable no true interoperability or standardisation. Our work contributes to overcome this fragility by putting forward: a specification for a standard ML dataset repository, describing how it internally stores the different components of datasets, and how it interfaces with external services; and a tool for the comprehensive structuring of ML datasets, defining them as Synthetic Cognitive Experience (SCE) records, which interweave the base audio-visual sensory data with multilevel interpretative information. A standardised structure to express the different components of the datasets and their interrelations will promote re-usability, resulting on the availability of a very large pool of datasets for a myriad of application domains. Our work thus contributes to: the universal interpretability and reusability of ML datasets; greatly easing the acquisition and sharing of training and testing datasets within the ML research community; facilitating the comparison of results from different ML tools; accelerating the overall research process. © MIR Labs.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Nome do Ficheiro Descrição Tamanho
IJCISIM_28(1) keywords:Machine-Learning,Datasets,Cyber-physical,SyntheticCognition,Metadata 3162.11 KB
Publicações Relacionadas

Dos mesmos autores

A Systematic Survey of ML Datasets for Prime CV Research Areas-Media and Metadata (2021)
Outra Publicação em Revista Científica Internacional
Maria Teresa Andrade; Hélder F. Castro ; Jaime S. Cardoso
Semantically connected web resources with MPEG-21 (2015)
Artigo em Revista Científica Internacional
H. Castro; M. T. Andrade; F. Almeida; G. Tropea; N. Blefari Melazzi; A. S. Mousas; D. I. Kaklamani; L. CL. Chiariglionehiariglione; A. Difino
FiM's DE-the communication package for the creative pipeline (2021)
Artigo em Revista Científica Internacional
Maria Teresa Andrade; Hélder Castro; Paula Viana

Da mesma revista

Reliable P2P Content Delivery for Alternative Business Models (2013)
Artigo em Revista Científica Internacional
Helder Castro; Artur Pimenta Alves; Maria T. Andrade
ML datasets as synthetic cognitive experience records (2018)
Artigo em Revista Científica Internacional
Castro, H; Maria Teresa Andrade
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-10-02 às 16:23:37 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico