Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > YAKE! Collection-Independent Automatic Keyword Extractor

Publicações

YAKE! Collection-Independent Automatic Keyword Extractor

Título
YAKE! Collection-Independent Automatic Keyword Extractor
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2018
Autores
Campos, R
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Mangaravite, V
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Pasquali, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Jorge, AM
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Nunes, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Jatowt, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ata de Conferência Internacional
Páginas: 806-810
40th European Conference on Information Retrieval Research (ECIR)
Grenoble, FRANCE, MAR 26-29, 2018
Outras Informações
ID Authenticus: P-00N-NF5
Abstract (EN): In this paper, we present YAKE!, a novel feature-based system for multi-lingual keyword extraction from single documents, which supports texts of different sizes, domains or languages. Unlike most systems, YAKE! does not rely on dictionaries or thesauri, neither it is trained against any corpora. Instead, we follow an unsupervised approach which builds upon features extracted from the text, making it thus applicable to documents written in many different languages without the need for external knowledge. This can be beneficial for a large number of tasks and a plethora of situations where the access to training corpora is either limited or restricted. In this demo, we offer an easy to use, interactive session, where users from both academia and industry can try our system, either by using a sample document or by introducing their own text. As an add-on, we compare our extracted keywords against the output produced by the IBM Natural Language Understanding (IBM NLU) and Rake system. YAKE! demo is available at http://bit.ly/YakeDemoECIR2018. A python implementation of YAKE! is also available at PyPi repository (https://pypi.python.org/pypi/yake/).
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 5
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

YAKE! Keyword extraction from single documents using multiple local features (2020)
Artigo em Revista Científica Internacional
Campos, R; Mangaravite, V; Pasquali, A; Jorge, AM; Nunes, C; Jatowt, A
A Text Feature Based Automatic Keyword Extraction Method for Single Documents (2018)
Artigo em Livro de Atas de Conferência Internacional
Campos, R; Mangaravite, V; Pasquali, A; Jorge, AM; Nunes, C; Jatowt, A
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-08-30 às 01:02:52 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias