Abstract (EN):
Cervical cancer remains a significant cause of mortality in low-income countries. As in many other diseases, the existence of several screening/diagnosis methods and subjective physician preferences creates a complex ecosystem for automated methods. In order to diminish the amount of labeled data from each modality/expert we propose a regularization-based transfer learning strategy that encourages source and target models to share the same coefficient signs. We instantiated the proposed framework to predict cross-modality individual risk and cross-expert subjective quality assessment of colposcopic images for different modalities. Thus, we are able to transfer knowledge gained from one expert/modality to another.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
8