Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Personalised Dynamic Viewer Profiling for Streamed Data

Publicações

Personalised Dynamic Viewer Profiling for Streamed Data

Título
Personalised Dynamic Viewer Profiling for Streamed Data
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2018
Autores
Veloso, B
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Malheiro, B
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Burguillo, JC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Foss, JD
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Ata de Conferência Internacional
Indexação
Outras Informações
ID Authenticus: P-00N-R7Y
Abstract (EN): Nowadays, not only the number of multimedia resources available is increasing exponentially, but also the crowd-sourced feedback volunteered by viewers generates huge volumes of ratings, likes, shares and posts/reviews. Since the data size involved surpasses human filtering and searching capabilities, there is the need to create and maintain the profiles of viewers and resources to develop recommendation systems to match viewers with resources. In this paper, we propose a personalised viewer profiling technique which creates individual viewer models dynamically. This technique is based on a novel incremental learning algorithm designed for stream data. The results show that our approach outperforms previous approaches, reducing substantially the prediction errors and, thus, increasing the accuracy of the recommendations. © Springer International Publishing AG, part of Springer Nature 2018.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-10-04 às 09:55:36 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico