Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins (vol 21, pg 511, 2017)

Publicações

Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins (vol 21, pg 511, 2017)

Título
Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins (vol 21, pg 511, 2017)
Tipo
Outras Publicações
Ano
2017
Autores
Speck Planche, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Natalia N D S Cordeiro
(Autor)
FCUP
Outras Informações
ID Authenticus: P-00M-FBJ
Abstract (EN): Breast cancer is the most frequent cancer reported in women, being responsible for hundreds of thousands of deaths. Chemotherapy has proven to be effective against this malignant neoplasm depending on different biological factors such as the histopathology, grade, and stage, among others. However, breast cancer cells have become resistant to current chemotherapeutic regimens, urging the discovery of new anti-breast cancer drugs. Computational approaches have the potential to offer promising alternatives to accelerate the search for potent and versatile anti-breast cancer agents. In the present work, we introduce the first multitasking (mtk) computational model devoted to the in silico fragment-based design of new molecules with high inhibitory activity against 19 different proteins involved in breast cancer. The mtk-computational model was created from a dataset formed by 24,285 cases, and it exhibited accuracy around 93% in both training and prediction (test) sets. Several molecular fragments were extracted from the molecules present in the dataset, and their quantitative contributions to the inhibitory activities against all the proteins under study were calculated. The combined use of the fragment contributions and the physicochemical interpretations of the different molecular descriptors in the mtk-computational model allowed the design of eight new molecular entities not reported in our dataset. These molecules were predicted as potent multi-target inhibitors against all the proteins, and they exhibited a desirable druglikeness according to the Lipinski¿s rule of five and its variants. © 2017 Springer International Publishing Switzerland
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Review of Structures Containing Fullerene-C-60 for Delivery of Antibacterial Agents. Multitasking Model for Computational Assessment of Safety Profiles (2015)
Outra Publicação em Revista Científica Internacional
Kleandrova, VV; Luan, F; Speck Planche, A; Natalia N D S Cordeiro
Multi-Target Drug Discovery in Medicinal Chemistry: Current Status and Future Perspectives (2015)
Outra Publicação em Revista Científica Internacional
Speck Planche, A; Natalia N D S Cordeiro
In Silico Assessment of the Acute Toxicity of Chemicals: Recent Advances and New Model for Multitasking Prediction of Toxic Effect (2015)
Outra Publicação em Revista Científica Internacional
Kleandrova, VV; Luan, F; Speck Planche, A; Natalia N D S Cordeiro

Ver todas (23)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-02 às 16:11:39 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias