Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers

Publicações

Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers

Título
Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers
Tipo
Artigo em Revista Científica Internacional
Ano
2016
Autores
Borchani, H
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Larranaga, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Bielza, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 20 2
Páginas: 257-280
ISSN: 1088-467X
Editora: IOS PRESS
Outras Informações
ID Authenticus: P-00K-9AN
Abstract (EN): In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of mining concept-drifting data streams. However, most of these approaches can only be applied to uni-dimensional classification problems where each input instance has to be assigned to a single output class variable. The problem of mining multi-dimensional data streams, which includes multiple output class variables, is largely unexplored and only few streaming multi-dimensional approaches have been recently introduced. In this paper, we propose a novel adaptive method, named Locally Adaptive-MB-MBC (LA-MB-MBC), for mining streaming multi-dimensional data. To this end, we make use of multi-dimensional Bayesian network classifiers (MBCs) as models. Basically, LA-MB-MBC monitors the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a concept drift is detected, LA-MB-MBC adapts the current MBC network locally around each changed node. An experimental study carried out using synthetic multi-dimensional data streams shows the merits of the proposed method in terms of concept drift detection as well as classification performance.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 24
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Ubiquitous Knowledge Discovery Introduction (2011)
Outra Publicação em Revista Científica Internacional
João Gama; May, M
Mining official data (2003)
Outra Publicação em Revista Científica Internacional
brito, p; malerba, d
Knowledge discovery from data streams (2008)
Outra Publicação em Revista Científica Internacional
João Gama; Aguilar Ruiz, J; Klinkenberg, R
Knowledge discovery from data streams (2007)
Outra Publicação em Revista Científica Internacional
João Gama; Aguilar Ruiz, J
Incremental learning and concept drift: Editor's introduction (2004)
Outra Publicação em Revista Científica Internacional
Kubat, M; João Gama; Utgoff, P

Ver todas (39)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-08-31 às 21:32:51 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias