Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Incremental scenario representations for autonomous driving using geometric polygonal primitives

Publicações

Incremental scenario representations for autonomous driving using geometric polygonal primitives

Título
Incremental scenario representations for autonomous driving using geometric polygonal primitives
Tipo
Artigo em Revista Científica Internacional
Ano
2016
Autores
Oliveira, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Santos, V
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Sappa, AD
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Dias, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 83
Páginas: 312-325
ISSN: 0921-8890
Editora: Elsevier
Outras Informações
ID Authenticus: P-00K-VXN
Abstract (EN): When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 14
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Incremental texture mapping for autonomous driving (2016)
Artigo em Revista Científica Internacional
Oliveira, M; Santos, V; Sappa, AD; Dias, P; António Paulo Moreira

Da mesma revista

Visual motion perception for mobile robots through dense optical flow fields (2017)
Artigo em Revista Científica Internacional
Pinto, AM; Paulo Gomes da Costa; Correia, M. V.; Aníbal Castilho Coimbra de Matos; António Paulo Moreira
Urban@CRAS dataset: Benchmarking of visual odometry and SLAM techniques (2018)
Artigo em Revista Científica Internacional
Ana Rita Gaspar; Alexandra Nunes; Andry Maykol Pinto; Aníbal Matos
TEFu-Net: A time-aware late fusion architecture for robust multi-modal ego-motion estimation (2024)
Artigo em Revista Científica Internacional
Agostinho, L; Pereira, D; Hiolle, A; Pinto, A
Robust 3/6 DoF self-localization system with selective map update for mobile robot platforms (2016)
Artigo em Revista Científica Internacional
Costa, CM; Sobreira, HM; Armando Jorge Sousa; Germano Veiga
Robust biped locomotion using deep reinforcement learning on top of an analytical control approach (2021)
Artigo em Revista Científica Internacional
Kasaei, M; Abreu, M; Lau, N; Pereira, A; reis, lp

Ver todas (15)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-29 às 03:56:39 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico