Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Solar Power Forecasting in Smart Grids Using Distributed Information

Publicações

Solar Power Forecasting in Smart Grids Using Distributed Information

Título
Solar Power Forecasting in Smart Grids Using Distributed Information
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2014
Autores
Bessa, RJ
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Trindade, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Monteiro, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Vladimiro Miranda
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Silva, CSP
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ata de Conferência Internacional
Páginas: 1-7
2014 Power Systems Computation Conference, PSCC 2014
18 August 2014 through 22 August 2014
Indexação
Outras Informações
ID Authenticus: P-00A-8MD
Abstract (EN): The growing penetration of solar power technology at low voltage (LV) level introduces new challenges in the distribution grid operation. Across the world, Distribution System Operators (DSO) are implementing the Smart Grid concept and one key function, in this new paradigm, is solar power forecasting. This paper presents a new forecasting framework, based on vector autoregression theory, that combines spatial-temporal data collected by smart meters and distribution transformer controllers to produce six-hour-ahead forecasts at the residential solar photovoltaic (PV) and secondary substation (i.e., MV/LV substation) levels. This framework has been tested for 44 micro-generation units and 10 secondary substations from the Smart Grid pilot in Evora, Portugal (one demonstration site of the EU Project SuSTAINABLE). A comparison was made with the well-known Autoregressive forecasting Model (AR - univariate model) leading to an improvement between 8% and 12% for the first 3 lead-times.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 7
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-10-16 às 03:19:26 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico