Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Age of Information Minimization Using Multi-Agent UAVs Based on AI-Enhanced Mean Field Resource Allocation

Publicações

Age of Information Minimization Using Multi-Agent UAVs Based on AI-Enhanced Mean Field Resource Allocation

Título
Age of Information Minimization Using Multi-Agent UAVs Based on AI-Enhanced Mean Field Resource Allocation
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Emami, Y
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Gao, H
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Li, K
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Tovar, E
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Han, Z
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 73
ISSN: 0018-9545
Editora: IEEE
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Outras Informações
ID Authenticus: P-010-NBD
Abstract (EN): Unmanned Aerial Vehicle (UAV) swarms play an effective role in timely data collection from ground sensors in remote and hostile areas. Optimizing the collective behavior of swarms can improve data collection performance. This paper puts forth a new mean field flight resource allocation optimization to minimize age of information (AoI) of sensory data, where balancing the trade-off between the UAVs' movements and AoI is formulated as a mean field game (MFG). The MFG optimization yields an expansive solution space encompassing continuous state and action, resulting in significant computational complexity. To address practical situations, we propose, a new mean field hybrid proximal policy optimization (MF-HPPO) scheme to minimize the average AoI by optimizing the UAV's trajectories and data collection scheduling of the ground sensors given mixed continuous and discrete actions. Furthermore, a long short term memory (LSTM) is leveraged in MF-HPPO to predict the time-varying network state and stabilize the training. Numerical results demonstrate that the proposed MF-HPPO reduces the average AoI by up to 45% and 57% in the considered simulation setting, as compared to multi-agent deep Q-learning (MADQN) method and non-learning random algorithm, respectively.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 13
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Understanding Influences of Driving Fatigue on Driver Fingerprinting Identification through Deep Learning (2023)
Artigo em Revista Científica Internacional
Yifan Sun; Chaozhong Wu; Hui Zhang; Sara Ferreira; José Pedro Tavares; Naikan Ding
Uncertainty Modeling for Participation of Electric Vehicles in Collaborative Energy Consumption (2022)
Artigo em Revista Científica Internacional
Hashemipour, N; Aghaei, J; Del Granado, PC; Kavousi-Fard, A; Niknam, T; Shafie-khah, M; Catalao, JPS
Smart and Hybrid Balancing System: Design, Modeling, and Experimental Demonstration (2019)
Artigo em Revista Científica Internacional
Ricardo de Castro; Cláudio Pinto; Jorge Varela Barreras; Rui Esteves Araújo; David A. Howey
Robust DC-Link Control in EVs With Multiple Energy Storage Systems (2012)
Artigo em Revista Científica Internacional
Ricardo de Castro; Rui Esteves Araújo; João Pedro F. Trovão; Paulo G. Pereirinha; Pedro Melo; Diamantino Freitas
Overspread Digital Transmission Over Wireless Linear Time-Varying MIMO Systems (2010)
Artigo em Revista Científica Internacional
marques, pm; abrantes, sa

Ver todas (13)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-24 às 13:37:57 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias