Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data

Publicações

Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data

Título
Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data
Tipo
Artigo em Revista Científica Internacional
Ano
2021
Autores
Lourenco, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ana Teodoro
(Autor)
FCUP
Joao Honrado
(Autor)
FCUP
Mario Cunha
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
sillero, n
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Outras Informações
ID Authenticus: P-00T-AY3
Abstract (EN): Roads and roadsides provide dispersal channels for non-native invasive alien plants (IAP), many of which hold devastating impacts in the economy, human health, biodiversity and ecosystem functionality. Remote sensing is an essential tool for efficiently assessing and monitoring the dynamics of IAP along roads. In this study, we explore the potentialities of object based image analysis (OBIA) approach to map several invasive plant species along roads using very high spatial resolution imagery. We compared the performance of OBIA approaches implemented in one open source software (OTB/Monteverdi) against those available in two proprietary pro-grams (eCognition and ArcGIS). We analysed the images by two sequential processes. First, we obtained a land-cover map for 15 study sites by segmenting the images with the algorithms Mean Shift Segmentation (MSS) and Multiresolution Segmentation (MRS), and by classifying the segmented images with the algorithms Support Vector Machine (SVM), Nearest Neighbour Classifier (NNC) and Maximum Likelihood Classifier (MLC). We created a mask using the polygons classified as non-vegetation to crop the images of the 15 study sites. Second, we repeated the previous segmentation and classification steps over the 15 masked images of vegetated areas using the same algorithms. OTB/Monteverdi, with MSS and SVM algorithms, showed to be a good software for land-cover mapping (OA = 87.0%), as well as ArcGIS, with MSS and MLC algorithms (OA = 84.3%). However, these two programs, using the same segmentation algorithms, did not achieve good accuracy results when mapping IAP species (OA(OTB/Monteverdi) = 63.3%; OAA(cos = 45.7%). eCognition, with MRS and NNC algorithms, reached better classification results in both land-cover and IAP maps (OA(Land-cover )= 95.7%; OA(Invasive-plant )= 92.8%). 'Bare soil' and 'Road', and 'A. donax' were the classes with best and worst overall accuracy, respectively, when mapping land-cover classes in the three programs. 'Other trees' was the class with the most accurate and significant differences in the three programs when mapping IAP species. The separation of each invasive species should be improved with a phenology-based design of field surveys. This study demonstrates the effectiveness of sequential segmentation and classification of RS data for mapping and monitoring plant invasions along linear infrastructures, which allows to reduce the time, cost and hazard of extensive field campaigns along roadsides.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 11
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands (2013)
Artigo em Revista Científica Internacional
Isabel Pÿças; Mário Cunha; Luís S Pereira; Richard G Allen
The Earth Observation Data for Habitat Monitoring (EODHaM) system (2015)
Artigo em Revista Científica Internacional
Richard Lucas; Palma Blonda; Peter Bunting; Gwawr Jones; Jordi Inglada; Marcela Arias; Vasiliki Kosmidou; Zisis I Petrou; Ioannis Manakos; Maria Adamo; Rebecca Charnock; Cristina Tarantino; Caspar A Mucher; Rob H G Jongman; Henk Kramer; Damien Arvor; Joao Pradinho Honrado; Paola Mairota
SegOptim-A new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data (2019)
Artigo em Revista Científica Internacional
Goncalves, J; I. Poças; Marcos, B; Mucher, CA; Joao Honrado
Satellite Earth observation data to identify anthropogenic pressures in selected protected areas (2015)
Artigo em Revista Científica Internacional
Harini Nagendra; Paola Mairota; Carmela Marangi; Richard Lucas; Panayotis Dimopoulos; Joao Pradinho Honrado; Madhura Niphadkar; Caspar A Mucher; Valeria Tomaselli; Maria Panitsa; Cristina Tarantino; Ioannis Manakos; Palma Blonda
Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites (2019)
Artigo em Revista Científica Internacional
Cardoso Fernandes, J; Ana Teodoro; Alexandre Lima

Ver todas (9)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-08 às 05:02:40 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias