Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > United States Influenza Search Patterns Since the Emergence of COVID-19: Infodemiology Study

Publicações

United States Influenza Search Patterns Since the Emergence of COVID-19: Infodemiology Study

Título
United States Influenza Search Patterns Since the Emergence of COVID-19: Infodemiology Study
Tipo
Artigo em Revista Científica Internacional
Ano
2022
Autores
Cai, O
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
A Revista está pendente de validação pelos Serviços Administrativos.
Vol. 8
Outras Informações
ID Authenticus: P-00V-V57
Resumo (PT):
Abstract (EN): Background: The emergence and media coverage of COVID-19 may have affected influenza search patterns, possibly affecting influenza surveillance results using Google Trends. Objective: We aimed to investigate if the emergence of COVID-19 was associated with modifications in influenza search patterns in the United States. Methods: We retrieved US Google Trends data (relative number of searches for specified terms) for the topics influenza, Coronavims disease 2019, and symptoms shared between influenza and COVID-19. We calculated the correlations between influenza and COVID-19 search data for a 1-year period after the first COVID-19 diagnosis in the United States (January 21, 2020 to January 20, 2021). We constructed a seasonal autoregressive integrated moving average model and compared predicted search volumes, using the 4 previous years, with Google Trends relative search volume data. We built a similar model for shared symptoms data. We also assessed correlations for the past 5 years between Google Trends influenza data, US Centers for Diseases Control and Prevention influenza-like illness data, and influenza media coverage data. Results: We observed a nonsignificant weak correlation (rho= -0.171; P=0.23) between COVID-19 and influenza Google Trends data. Influenza search volumes for 2020-2021 distinctly deviated from values predicted by seasonal autoregressive integrated moving average models-for 6 weeks within the first 13 weeks after the first COVID-19 infection was confirmed in the United States, the observed volume of searches was higher than the upper bound of 95% confidence intervals for predicted values. Similar results were observed for shared symptoms with influenza and COVID-19 data. The correlation between Google Trends influenza data and CDC influenza-like-illness data decreased after the emergence of COVID-19 (2020-2021: rho=0.643; 2019-2020: rho=0.902), while the correlation between Google Trends influenza data and influenza media coverage volume remained stable (2020-2021: rho=0.746; 2019-2020: rho=0.707). Conclusions: Relevant differences were observed between predicted and observed influenza Google Trends data the year after the onset of the COVID-19 pandemic in the United States. Such differences are possibly due to media coverage, suggesting limitations to the use of Google Trends as a flu surveillance tool.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 16
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

COVID-19 contact tracing as an indicator for evaluating the pandemic situation: a simulation study (2022)
Artigo em Revista Científica Internacional
Marques-Cruz, M; Nogueira-Leite, D; Alves, JM; Fernandes, F; Fernandes, JM; Almeida, MÂ; Cunha Correia, P; Perestrelo, P; Ricardo Cruz Correia; Pita Barros, P
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-12-05 às 04:41:50 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico