Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Direct lifts of coupled cell networks

Publicações

Direct lifts of coupled cell networks

Título
Direct lifts of coupled cell networks
Tipo
Artigo em Revista Científica Internacional
Ano
2018
Autores
dias, aps
(Autor)
FCUP
moreira, cs
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Revista
Título: NonlinearityImportada do Authenticus Pesquisar Publicações da Revista
Vol. 31
Páginas: 1299-1312
ISSN: 0951-7715
Outras Informações
ID Authenticus: P-00N-NND
Abstract (EN): In networks of dynamical systems, there are spaces defined in terms of equalities of cell coordinates which are flow-invariant under any dynamical system that has a form consistent with the given underlying network structure-the network synchrony subspaces. Given a network and one of its synchrony subspaces, any system with a form consistent with the network, restricted to the synchrony subspace, defines a new system which is consistent with a smaller network, called the quotient network of the original network by the synchrony subspace. Moreover, any system associated with the quotient can be interpreted as the restriction to the synchrony subspace of a system associated with the original network. We call the larger network a lift of the smaller network, and a lift can be interpreted as a result of the cellular splitting of the smaller network. In this paper, we address the question of the uniqueness in this lifting process in terms of the networks' topologies. A lift G of a given network Q is said to be direct when there are no intermediate lifts of Q between them. We provide necessary and sufficient conditions for a lift of a general network to be direct. Our results characterize direct lifts using the subnetworks of all splitting cells of Q and of all split cells of G. We show that G is a direct lift of Q if and only if either the split subnetwork is a direct lift or consists of two copies of the splitting subnetwork. These results are then applied to the class of regular uniform networks and to the special classes of ring networks and acyclic networks. We also illustrate that one of the applications of our results is to the lifting bifurcation problem.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 14
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Spectrum of the elimination of loops and multiple arrows in coupled cell networks (2012)
Artigo em Revista Científica Internacional
dias, aps; moreira, cs

Da mesma revista

Towards a classification of networks with asymmetric inputs (2021)
Artigo em Revista Científica Internacional
Manuela Aguiar; dias, aps; Soares, P
The statistical stability of equilibrium states for interval maps (2009)
Artigo em Revista Científica Internacional
freitas, jm; todd, m
The disappearance of the limit cycle in a mode interaction problem with Z(2) symmetry (1997)
Artigo em Revista Científica Internacional
Sofia B. S. D. Castro
Strong statistical stability of non-uniformly expanding maps (2004)
Artigo em Revista Científica Internacional
alves, jf
Statistical stability and limit laws for Rovella maps (2012)
Artigo em Revista Científica Internacional
alves, jf; soufi, m

Ver todas (40)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-24 às 12:27:27 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias