Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data
Publication

Publications

Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data

Title
Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data
Type
Article in International Scientific Journal
Year
2021
Authors
Lourenco, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ana Teodoro
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Joao Honrado
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Mario Cunha
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
sillero, n
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Other information
Authenticus ID: P-00T-AY3
Abstract (EN): Roads and roadsides provide dispersal channels for non-native invasive alien plants (IAP), many of which hold devastating impacts in the economy, human health, biodiversity and ecosystem functionality. Remote sensing is an essential tool for efficiently assessing and monitoring the dynamics of IAP along roads. In this study, we explore the potentialities of object based image analysis (OBIA) approach to map several invasive plant species along roads using very high spatial resolution imagery. We compared the performance of OBIA approaches implemented in one open source software (OTB/Monteverdi) against those available in two proprietary pro-grams (eCognition and ArcGIS). We analysed the images by two sequential processes. First, we obtained a land-cover map for 15 study sites by segmenting the images with the algorithms Mean Shift Segmentation (MSS) and Multiresolution Segmentation (MRS), and by classifying the segmented images with the algorithms Support Vector Machine (SVM), Nearest Neighbour Classifier (NNC) and Maximum Likelihood Classifier (MLC). We created a mask using the polygons classified as non-vegetation to crop the images of the 15 study sites. Second, we repeated the previous segmentation and classification steps over the 15 masked images of vegetated areas using the same algorithms. OTB/Monteverdi, with MSS and SVM algorithms, showed to be a good software for land-cover mapping (OA = 87.0%), as well as ArcGIS, with MSS and MLC algorithms (OA = 84.3%). However, these two programs, using the same segmentation algorithms, did not achieve good accuracy results when mapping IAP species (OA(OTB/Monteverdi) = 63.3%; OAA(cos = 45.7%). eCognition, with MRS and NNC algorithms, reached better classification results in both land-cover and IAP maps (OA(Land-cover )= 95.7%; OA(Invasive-plant )= 92.8%). 'Bare soil' and 'Road', and 'A. donax' were the classes with best and worst overall accuracy, respectively, when mapping land-cover classes in the three programs. 'Other trees' was the class with the most accurate and significant differences in the three programs when mapping IAP species. The separation of each invasive species should be improved with a phenology-based design of field surveys. This study demonstrates the effectiveness of sequential segmentation and classification of RS data for mapping and monitoring plant invasions along linear infrastructures, which allows to reduce the time, cost and hazard of extensive field campaigns along roadsides.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands (2013)
Article in International Scientific Journal
Isabel Pÿças; Mário Cunha; Luís S Pereira; Richard G Allen
The Earth Observation Data for Habitat Monitoring (EODHaM) system (2015)
Article in International Scientific Journal
Richard Lucas; Palma Blonda; Peter Bunting; Gwawr Jones; Jordi Inglada; Marcela Arias; Vasiliki Kosmidou; Zisis I Petrou; Ioannis Manakos; Maria Adamo; Rebecca Charnock; Cristina Tarantino; Caspar A Mucher; Rob H G Jongman; Henk Kramer; Damien Arvor; Joao Pradinho Honrado; Paola Mairota
SegOptim-A new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data (2019)
Article in International Scientific Journal
Goncalves, J; I. Poças; Marcos, B; Mucher, CA; Joao Honrado
Satellite Earth observation data to identify anthropogenic pressures in selected protected areas (2015)
Article in International Scientific Journal
Harini Nagendra; Paola Mairota; Carmela Marangi; Richard Lucas; Panayotis Dimopoulos; Joao Pradinho Honrado; Madhura Niphadkar; Caspar A Mucher; Valeria Tomaselli; Maria Panitsa; Cristina Tarantino; Ioannis Manakos; Palma Blonda
Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites (2019)
Article in International Scientific Journal
Cardoso Fernandes, J; Ana Teodoro; Alexandre Lima

See all (9)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-30 at 07:57:31 | Privacy Policy | Personal Data Protection Policy | Whistleblowing