Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Separation of variables for U-q(sl(n+1))(+)
Publication

Publications

Separation of variables for U-q(sl(n+1))(+)

Title
Separation of variables for U-q(sl(n+1))(+)
Type
Article in International Scientific Journal
Year
2005
Journal
Vol. 48
Pages: 587-600
ISSN: 0008-4395
Other information
Authenticus ID: P-00F-H95
Abstract (EN): Let U-q(sl(n+1))(+) the positive part of the quantized enveloping algebra Uq(sl(n+1)). Using results of Alev-Dumas and Caldero related to the center of U-q(sl(n+1))(+) we show that this algebra is free over its center. This is reminiscent of Kostant's separation of variables for the enveloping algebra U (g) of a complex semisimple Lie algebra and also of an analogous result of Joseph-Letzter for the quantum algebra U-q(g). Of greater importance to its representation theory is the fact that U-q(sl(n+1))(+) is free over a larger polynomial subalgebra N in n variables. Induction from N to Uq(sl(n+1))(+) provides infinite-dimensional modules with good properties, including a grading that is inherited by submodules.
Language: English
Type (Professor's evaluation): Scientific
Contact: slopes@fc.up.pt
No. of pages: 14
Documents
File name Description Size
sep 8930.38 KB
Related Publications

Of the same authors

Special issue in memory of Georgia Benkart (2024)
Another Publication in an International Scientific Journal
Elduque A.; Kirkman E.; Samuel A Lopes; Witherspoon S.; Zelmanov E.
A Parametric Family of Subalgebras of the Weyl Algebra II. Irreducible Modules (2013)
Another Publication in an International Scientific Journal
Georgia Benkart; Samuel A Lopes; Matthew Ondrus
Treze Viagens pelo Mundo da Matemática (2012)
Book
Lucinda Lima; António Machiavelo; José Carlos Santos; João Filipe Queiró; Maria Pires de Carvalho; Luís Oliveira; Leonor Moreira; Samuel Lopes; António Guedes de Oliveira; António Bivar; Christian Lomp; António M. Fernandes; Sandra Mónica Pires; Ana Cristina Moreira Freitas; Jorge Milhazes Freitas; Jorge Rocha; Carlos Sá
The geometric classification of nilpotent algebras (2023)
Article in International Scientific Journal
Kaygorodov, I; Khrypchenko, M; Samuel A Lopes
The algebraic classification of nilpotent algebras (2022)
Article in International Scientific Journal
Kaygorodov, I; Khrypchenko, M; Samuel A Lopes

See all (29)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-06 at 05:46:57 | Privacy Policy | Personal Data Protection Policy | Whistleblowing