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Abstract
Let U, (sl,+1)" be the positive part of the quantized enveloping algebra
Uqg(slp+1). Using results of Alev-Dumas and Caldero related to the center
of Uy(slpt1)T, we show that this algebra is free over its center. This is
reminiscent of Kostant’s separation of variables for the enveloping algebra
U(g) of a complex semisimple Lie algebra g, and also of an analogous result
of Joseph-Letzter for the quantum algebra U, (g). Of greater importance
to its representation theory is the fact that Uy(sl,+1)" is free over a larger
polynomial subalgebra N in n variables. Induction from N to Uy (sly+1)™
provides infinite-dimensional modules with good properties, including a

grading that is inherited by submodules.

1 Introduction

We work over a field K of characteristic 0 and assume ¢ € K* is not a root
of unity. In this paper we show that the algebra U,(sl,11)", the quantized
version of the enveloping algebra of the nilpotent Lie algebra of strictly upper
triangular (n 4+ 1) x (n + 1) matrices, is free when viewed as a module over its
center. This has consequences for the representation theory of U, (sl,41)", one
of which being the existence of simple modules with arbitrary central character.
In fact, we show first that Uy,(sl,41)" is free over a polynomial subalgebra N
in variables Ay, ..., A, that commute with the Chevalley generators ey, ..., e,
up to a power of the parameter q.
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Our motivation is the study of infinite-dimensional Uy (sl,,+1)"-modules. We
use the latter result to construct modules by inducing from one-dimensional N-
modules. Given an N-character y € N = Alg(N,K) with corresponding simple
module V,, = Kuv,, the induced U, (sl,41)T-module M, = U,(sly41)™ @n Vi
has a weight space decomposition with respect to IV,

=
neN

where Mﬁ") ={m € M, | z.m = n(z)m for all z € N}, and it is easy to see
that every subquotient of M, inherits this grading.

When n = 2, the algebra U,(sl3)" is isomorphic to the down-up algebra
A(q+qt,—1,0) with generators d, u and defining relations

d®u — (¢ + ¢ Ydud +ud®* =0
du® — (¢ + ¢ Hudu +u’d =0.

In this case, the polynomial algebra N is just K[du,ud], and the modules we
discuss are universal amongst cyclic weight modules for the down-up algebra
A(q+q~% —1,0). The case n = 3 is more intricate, but we obtain two distinct
two-parameter families of representations.

We begin with the basic definitions, including the description of a PBW
(Poincaré-Birkhoff-Witt) basis and a filtration for which the associated graded
algebrais a quantum affine space. After briefly reviewing results of Caldero [5, 6]
and of Alev-Dumas [1] on the center Z of Uy(sl,,+1)", we show that Uy (sl,41)"
is free over IV and also over Z, by working in the graded algebra first. We can
then exploit this result to develop the representation theory of Uy (sl,41)".

The techniques of [7] can be used instead to show the freeness of U, (sl,4+1)"
over its center. Our approach is perhaps more pedestrian. But the same meth-
ods as we use here apply to the enveloping algebra of the Lie algebra sl 1
using Dixmier’s description of the center in [9]. We therefore see that U (sl )
is also free over its center, a result that suggests that the class of algebras for
which the separation of variables is true goes well beyond the universal envelop-
ing algebras of the finite-dimensional complex semisimple Lie algebras and their
quantum analogues. Further evidence of this comes from the theory of down-up
algebras, which are known to behave similarly to enveloping algebras. In [2],
the authors prove separation and annihilation theorems for the down-up algebra
A(a, 8,7) for all choices of parameters a, §,7. See also the remarks at the end
of Section 5.

2 Definitions and notation

2.1. Let K be a field of characteristic 0 and assume ¢ € K* is not a root of
unity. The algebra we are concerned with is the unital, associative K-algebra
having generators ey, ..., e,, which satisfy the relations



€;€; — €5€; =0 if |Z —]| 75 1 (1)
efe; — (g +q Neiejei +ejel =0 if i —j| = 1. (2)

We will denote this algebra by U, (sl,,+1)"; it is the positive part of the quantized
enveloping algebra U, (sl,,+1) with respect to the usual triangular decomposition
(see [12, 8, 10, 13], for example).

2.2. Let sl,y1 be the Lie algebra of traceless (n + 1) x (n + 1) matrices over
the complex field C; R the set of roots with respect to a Cartan subalgebra b;
ai,...,an a base of R; @i,...,w, the fundamental weights; Q@ = @) _, Zay,
the root lattice; QT = @_, Noy, the positive root lattice; P = @, _, Zwy,
the weight lattice; and R™ = RN Q% the set of positive roots. There is a
nondegenerate bilinear form on @ x @ given by (a;, ;) = 26;; — 6; j+1 for all
,7=1,...,n.

The algebra U,(sl,4+1)" can be graded by the positive root lattice QT by
assigning to e; the degree «;, as the defining relations are homogeneous. We use
the terminology weight instead of degree for this gradation and write wt(u) = 8
if u € Uy(sly+1)T has weight € QT.

3 PBW basis and a filtration

Many authors have studied PBW-bases of U, (sl,+1)" (e. g. [16, 17, 18, 19]);
here we follow Ringel [17]. The filtration in 3.2 below is similar to the one in [§]
and yields the same graded algebra.

3.1. Foreach 1 < i < j n + 1, we can define weight elements X;; re-
cursively by setting X; ;41 = e; for all ¢ € {1,...,n} and X;; = XXy, —
¢ ' XXy for1<i<k<j<n+1 It can be shown that this definition
doesn’t depend on k (see [17, App. 2]). These elements correspond bijectively
to the positive roots of s, 11, as wt(X;;) = oy +--- +a;—1 for all i < j. The
set {Xij}i<icj<nt1 can be linearly ordered using the rule

A

Xij<Xuw << (k<i) or (k=i and [<yjy).

We use the alternative notation X}, for the kth element in this increasing chain,
so that {Xij}1§i<j§n+1 = {Xk}lgkgma where m = |R+| = %n(n + ].)

Let b € N™ and write XP := X[* ... Xl». By [17, Thm. 2], the monomials
XP (b € N™) form a basis of U,(sl,41)". Furthermore, for all i < j we have

Xle — q(wt(Xi)MUt(Xj))Xin + Z cai+1,...,a_,'_1X7;Ci+1—1 L )(;41'7117 (3)
where co,,,....a;_, € K, and the sum is over all sequences (a;y1,...,a;1) of

natural numbers such that the homogeneity of (3) is preserved.



3.2. We order N by setting b < ¢ <= there is [ € {1,...,m} such that
b; < ¢ and by = ¢; for all ¢ > [. Naturally, b < ¢ means b < c or b = ¢. This
is easily seen to be a well-order relation on N™. Define

= GB]KXb and Uf(<a)= U US(b)

b<a b<a

The family {U,(a)}aenm is an increasing filtration of U,(sln1)™ by N™
with respect to the order defined above. In particular, Uf(b) C Uf(a) if
b < a, Upenm U (@) = Uy(slpyr)™ and Uf(a) - U (b) C Uf(a+ b). The
latter property is essentially a consequence of (3).

3.3. By 3.2 we can define the associated graded algebra as

S E gr (Uy(stun)™) = @ U @)/U; (< a), (Uf(<0)=(0),

aeN™

where multiplication is defined by linearity in the following way:

Given u € U (a)\ U, (< a), we say u has degree a (by convention, deg(0) =
(=00,...,—00)). Write gr(u) =u + Uf (< a). If v € UF(b)\ U (< b), then

gr(u) - gr(v) =uv + US (< (a+b)).
This is well-defined by 3.2, and we have the relations
gr(X;)gr(X;) = ¢ XD gr(X)gr(X;) i i < .

Therefore deg(uv) = deg(u) + deg(v), and the associated graded algebra S is
an integral domain. Also, gr(u)gr(v) = gr(uv). In fact, S is the quantum
affine space given by generators 61,...,6,, and relations 6;0; = t;;6,6;, where
6; = gr(X;), and

qwHXo)wi(X;) ifi<y
tij = 1 if i = ] (4)
tj_il if j <.

4 Central and g¢-central elements of U,(sl,;1)"

Alev and Dumas [1] as well as Caldero [4, 5] have determined the center of
U,(sly4+1)T. According to their work, there exist algebraically independent el-
ements Ay, ..., Ay, of Uy(sl,41)T that commute with the generators ey, ..., e,
up to a power of g. They generate a (commutative) polynomial subalgebra that
contains the center. We summarize results of [5] regarding the A;, and then
determine gr(A;) (1 <7 < n) explicitly in the graded algebra S of 3.3.



4.1. Consider the matrix

g )(LZ )(LS o )(Ln+1
5 X2,3 o X2,n+1
X = T ,
O 5 Xn,nJrl
§

with € = q(¢—¢~')™". Forevery i = 1,...,n, define A; = Det,(X;), where X; is
the ¢ x 7 matrix obtained from the top ¢ rows and rightmost ¢ columns of X', and
Det, is a quantum determinant that associates to any matrix M = (my;)1<k,i<p
with entries in a K-algebra C' the element

Det, M = Z (_qil)l(a)ma(p)m T Mo(1),1s (5)
oeX,

(o) being the length of the permutation o in the symmetric group .

4.2. Let UY be the group algebra of the weight lattice P. Then UY is the algebra
of Laurent polynomials K[K gl yene ,Kin], where each K, corresponds to the
fundamental weight w;. The “positive Borel” Uq (sl,41)7° is defined so that
Uq(sln1)™ and UY are subalgebras and Uy(sl,11)7° ~ Uy(slq1)™ @ UL as a

vector space, with the additional relations:

KwiejK;} = ¢ ej, foralll<i,j<n. (6)
There exists a Hopf algebra structure on U, (sl,+1)>°, endowing this algebra
with a (left) adjoint action denoted by ad. For each 1 < i < n let L,(w;)
be the finite-dimensional simple module of highest weight w; for the quan-
tized enveloping algebra U,(sl,+1) (see [12], for example). The submodule
adUg(sl41)T(K52) of Uy(sh,41)7° is isomorphic to Ly(ww;) as a Uy(sl,11)*-
module [14, 6, 5], and the element ey o,) € Uy(sly41)" is defined in [6, 5] so
that K;?es(wi) corresponds to a highest weight vector of L,(w;) under that
isomorphism. In other words, ad e;(K_?ey(w,)) =0 for all 1 <i,j <n.

4.3. The following theorem describes the center of U,(sl,41)" and the nature
of the A;, 1 <i < n. Part (c) is the quantum analogue of [9, Thm. 1].

Theorem 1 ([5, 6]). For 1 <i,j <n, the following hold:
(a) 6iA]‘ = qaijfai'"Jrl’jAjei.

(b) The subalgebra N of Uy(sl,4+1)" generated by Ay, ..., A, is a polynomial
algebra K[Aq,...,A,] in n variables.

(¢) The center Z of Uy(slyr1)t is the polynomial algebra in the variables
{AkA 1k | 1 <k < n/2} if nis even and {AgApy1—k | 1 < k <
(n =1)/2} U{A(ny1)/2} if n is odd.



Proof. Let ¢ : Uy(sl,41)" — Uy(sly1)T be the antiautomorphism with ((e;) =
e; for all i. Using [5, Thm. 4.1], it is not hard to see that ey,) = ((A;) for
all 1 < i < n. Then, part (a) follows from the proof of [5, Thm. 3.2], part (c)
from [5, Thm. 4.1] and part (b) from [5, Prop. 3.2] and [6, Rem. 2.2]. O

In the case of the algebra U, (sl3)™", for example, A; = X; 3 = e1e2—q lese;
and Ay = X 3X1 0—¢ ' X3¢ = £(eae; —q ™ eres). Hence the center of U, (sl3) ™
is the polynomial subalgebra K[z], where z = AjA,.

The A; are said to be g-central, because they commute with the Chevalley
generators of Uy (sl,+1)", up to a power of ¢q. The set of g-central elements is a
proper subset of N which is closed under multiplication, but is not a subspace.
For example, A; + A,, is not g-central. See [6, Thm. 2.2] for details.

4.4. Tt is easy to see that the term of highest order of A;; 1 < i < n, when
expressed in terms of the PBW-basis of 3.1 is obtained by taking the identity
permutation in (5). Therefore,

AN =X 1 X1 0 - Xon3-i X1 nyo—i + (lower order terms)
and consequently, in S = gr (Uy(sl,+1)7),
gr(Ai) = gr(Xint+1) gr(Xic1,n) -+ - gr(Xont3-i) gr(X1,n42-i). (7)

Hence, each of the elements gr(X; ;), 1 <i < j <n+ 1, occurs exactly once in
precisely one of the monomials gr(Ag), 1 <k <n.

5 U,(sl,+1)" as a module over its center

Recall that the algebraically independent elements Ay, ..., A, generate a poly-
nomial algebra denoted by N. We show that U, (sl,11)" is free as a module over
N, acting via (right or left) multiplication, and as a consequence, we see that it
is also free over its center, Z. When we write A Zg B @k C for a K-algebra A,
we mean that B and C' are subspaces of A and that the mapm : Bog(C — A
that sends b ® c to bc is a vector space isomorphism.

5.1. Let T' = (tij)1<ij<r be a matrix with nonzero scalar entries satisfying
tiy; = 1 and t;; = tj_i1 for all ¢,7. The quantum affine space associated with
T is the unital, associative K-algebra with generators z1,...,2,, and relations
zjz; = t;j2;%; for all ¢, j. We denote it by Kg[21,...,2,]. The subalgebra gener-
ated by the monomial z; -- -z, is a polynomial algebra in one variable that we
naturally denote by K[z ---z,]. The following technical lemma is straightfor-
ward to prove:

Lemma 1. Kp[z1,...,2,] is free over K[z1 ---2z,] (acting by multiplication).
Indeed, there is a set of linearly independent monomials B, C Ky[z1,..., 2]
such that if H, is the vector space spanned by B,., then

Krlz1,...,2r) 2k Hr @x Klz1 -+ - 2]



The set B, can be defined recursively (and independently of T') by
By =B,y ({(z12r21)" |a e NJU{2l | c€ N\ {0}}), By ={1}.

5.2. Let S be the graded algebra introduced in 3.3. As noted earlier, it is the
quantum affine space Kr[f1,...,60n,] where 8; = gr(X;) and ¢;; is given by (4).
As in 3.1, we also use the notation 6;; = gr(X;;). For each 1 <1i <n, let S; be
the subalgebra of S generated by {6k k4nt+1—i | 1 < k <i}. Set

Yi = gr(A;) =6int1- 01 pg2—i € Si

and J; = Kly;] C S;. Denote by J the subalgebra of S generated by y1,...,yn.
Since y; = gr(A;) for all 1 < i < n, by (7), we conclude that the y; commute
with each other, and hence that J is the polynomial algebra in the variables
Y1,---,Yn- Lherefore,

S =g 51 ®k -+ Ok Sp, and J =g J1 @k - Ok Jn.

It is clear that S; is the quantum affine space Kr, [01 n42—i, - - - 8 nt1], T; being
obtained from 7" in the obvious way. Thus S; 2k H; @k J; by Lemma 1, where
H; is the linear span of the monomial basis given in this lemma. Since the
spaces H; are homogeneous, (in the sense that they have a basis consisting of
certain monomials in the variables 6;) it follows that J; ®x H; &k H; @k J; for
all 4,5 and so

S =k (Hi®kh) @k Ok (Hn @k Jn)
>p (Hy Qg - ©x Hp) @k (J1 @k - - @k Jn)
2y HerJ (8)

with H = H; Qi - -+ @k H,. This shows that S is free over J: if B is a K-basis
for H, then S = @, _;bJ as (right) J-modules.

5.3. Consider the linear isomorphism S : Uy(sl,+1)t — S defined by
Z caX?® — Z cab?,
aghNm aghNm

and let K = 371 (H).

Proposition 1. U,(sl,+1)" is free over the polynomial algebra N. Specifically,
Uy(slpy1)™ =g K @k N.

Proof. Let ¢ : K @x N — U} be the multiplication map.
1. ¢ is surjective

We will show that X € Im by induction on a € N™. If a = (0,...,0),
then 1 = X2 € (K @k N), as 1 € K. Suppose the result is true for all d < a.
By (8), gr(X?) = 60> = Ele hip; with h; € H and p; = pi(y1,---,yn) € J. It



can be assumed that the h; are monomials in the 6;, and the p; are monomials
in the y; (and hence in the §; also) up to a nonzero scalar multiple. Since 62
is itself a monomial, we can further assume k = 1 and 6 = hp, say h = 6°
and p = A\y®. Notice that XP = 371 (h) € K and gr ¢ (XP @ AA®) = gr(X?).
Therefore X* — )(X® @ AA°) € Uf(d) for some d < a, and the induction
hypothesis implies that X® € Ima).

2. 1 is injective

Suppose B~ (hy)p1 + - + B~ (hg)pr = 0 with h; € H and p; € N. We
can assume the h; are (distinct) monomials in the ; and that the elements
B~L(h;)p; all have the same degree, say d € N™. Then we have

0 = gr(B " (h)pL+-+ B (h)pr)

= higr(pi) + -+ hp gr(pr). 9)

Since the h; € H are linearly independent over K and gr(p;) € J, equations (8)
and (9) force gr(p;) =0 for all 1 <i <k, and hence py =---=p;, =0.

Therefore 1) is a linear isomorphism and the proposition is proved. O

This brings us to an analogue of Kostant’s separation of variables [15] (see
also [14] for a version for U, (g), g semisimple). Since the center Z of U, (sl,41)*
is a polynomial algebra in the variables A; A,,, AsA,,_1, etc. (see Theorem 1(c)),
we see that N is free over Z. Combining this with Proposition 1 yields the
following separation theorem for U, (sl,41)":

Theorem 2. Uy(sl,+1)" is free over its center.
Remarks:

1. Recently, Futorny and Ovsienko [11] have proved a similar result for what
they call special PBW algebras over algebraically closed fields of charac-
teristic 0. These are algebras R with a PBW-type basis and with an
increasing filtration over N, such that the associated graded algebra is a
(commutative) polynomial ring. Their hypothesis is that there are mu-
tually commuting regular elements x4, ..., x:, that generate a polynomial
subalgebra I' C R. They prove that R is free as a left or right I'-module.
A major difference between their work and ours is that our associated
graded algebra is not commutative, and K is not assumed to be alge-
braically closed. Consequently, the algebraic geometry methods of [11] do
not apply here.

2. Uy(sl,4+1)7 is not finite over Z, as the proof shows and as also is apparent
from the fact that there are infinite-dimensional simple modules.
6 Applications to representations

6.1. As before, Z denotes the center and N = K[Ay,...,A,]. If K is alge-
braically closed, the irreducible N-modules are parametrized by the characters



of N, i. e. algebra homomorphisms in Alg(N,K), which in turn can be identified
with the elements of K”. Following this idea, we think of x = (x1,...,xn) € K”
as the character N — K, A; — x;.

Let V,, = Kv, be the simple N-module corresponding to x, and define the
induced Uy (sl,4+1)"-module M, = U,(sl,4+1)* @n V,. By Proposition 1,

My =KexVy= P MP
nekn

as vector spaces, where each Mﬁ") is a semisimple N-module with simple sum-
mands isomorphic to V;. The space M>(<X) is nonzero and generates M, as a
U,(sly41)T-module. Any maximal submodule of M, inherits this grading by
K", and the corresponding factor module is an irreducible U, (sl,,+1)"-module,
which is semisimple as an N-module and has a common eigenvector for N with
eigenvalue .

Thus, we see that any character y of N can be “lifted” to a simple Uy (sl,41)7" -
module L = P, ¢y L with L&) # (0) and L™ a direct sum of copies of the
simple N-module V;;, for all n € K*. An analogous statement is true if we use
Z instead of N, but in such a case, L = L) for # a given character of Z.

6.2. Throughout this paragraph we consider the algebra U, (sl3) ™, so that n = 2.
We will construct a family of modules for U, (sl3)™, each universal with respect
to the property that they are generated by a common eigenvector for the ¢-
central elements A; and A, with a given eigenvalue. These turn out to be
closely related to the weight modules for the down-up algebra A(q+¢~*, —1,0),
defined in [3].

The generators of the PBW basis of U,(sl3)* described in 3.1 are:

X1 = ey, Xy =eres — q leser, X3 = ey,
and the g-central elements A; and A, can be taken to be
A; =X, and Ay =ejes — qeseq.

A basis for Uy(sl3)* over K[A;,Az]is B = {X{¢ | a > 1}U{X¢ | b > 0}.
Let (a,8) € K* be a character of K[A;,A,]. The induced module M, 5 =
U,y(sl3)* @n Via,s) has a K-basis indexed by B. Computing in U,(sl3)*, we see
that M, g) is the Uy(sl3)T-module K[z*!] with action:

.« Lla], 2ot ifa>1
-t = ol ifa <0,

o« patt ifa>0
c2-r = LJda+1], 20 ifa < -1,

where we have identified ® with X{ if ¢ > 1 and with X, if a < 0. The
quantity , [k],, with A\, € K and &k € Z is given by
_ AP —pgt

NGIA = (10)



In the particular case where A = 1 = y we recover the g-integer [k] = | [k],.
Notice that

Ap.x% = ¢%ax® and As.z® =q *pz?, foralla € Z

and hence, if («, 8) # (0,0), this module is graded by Z, with deg x* = a. Every
submodule inherits this grading. This implies that M, g) has a unique maximal
submodule when (a, 8) # (0,0), as the graded components have dimension 1.
Let us examine this in more detail. We have two cases:

A) apt = ¢ ?™, for some m € Z. Then [a], =0 <= a = m. The
unique maximal submodule is spang{z” | r > m} in case m > 1, or

spang{z" | r < m — 1} in case m < 0;

B) If we are not in the situation of A), then (0) is the unique maximal
submodule, and M, gy is simple.

If (a, ) = (0,0), there is no longer a unique maximal submodule. For ex-
ample, if v € K* then the following are all maximal submodules of M q) of
codimension 1:

Ug(sta) (@ — A1), Uy(sly) (vl —aY), U,(sls) (z,271).

In fact, if the field K is algebraically closed, then as v runs through all nonzero
scalars, these are all its maximal submodules, and the corresponding simple quo-
tients account for all isomorphism classes of finite-dimensional simple U, (sl3)"-
modules. There is a nonzero vector vy such that the simple quotient is isomor-
phic to Kvy with action given by e;.vg =0, e3.v9 = yvg; €1.v9 = Yvg, €2.V9 =
0; or e;.vg = 0 = e5.vg, respectively.

The class of modules M, g) is, by construction, universal in the sense that
if V is any U,(sl3)T-module generated by an element vy € V with A;.vy9 = awy
and Az.vg = fvg, then V' is a homomorphic image of M g).

We are now ready to make the connection with the down-up algebra A =
A(g+q~1,—1,0). The reader is referred to [3] for all the definitions concerning
this algebra, which we shall not review here. After identifying d and u in A
with ey and es in Uy (sl3)T respectively, we see that these algebras coincide.

According to [3], a weight module for A is one for which the operators du and
ud are simultaneously diagonalizable. Since a common eigenvector for du and
ud is also a common eigenvector for du — ¢ 'ud and du — qud, and vice versa, it
follows that such modules are the ones having a basis of common eigenvectors
for Ay and A,. Furthermore, as A; and As are g-central, it suffices that the
module be generated by such eigenvectors in order for it to be a weight module.
Given the universal property of the modules M, g), we see that any cyclic
weight module is a homomorphic image of M, z), for some (a,3) € K2. In
particular, the following proposition is easy to prove:

Proposition 2. Let k, A € K and define the highest weight module V (X), lowest
weight module W (k) and doubly infinite module V (k,\) as in [3]. Then,

10



(a) Spang{x’ | i < —1} is a submodule of M\, and the corresponding
factor module is isomorphic to V(A);

(b) Spang{z®|i > 1} is a submodule of M(_4~1,—gr), and the corresponding
factor module is isomorphic to W (k);

(c) If (k,\) = (0,0), then V(0,0) is not a Noetherian module, and therefore
is not isomorphic to a subquotient of M4 gy, for any (o, 3) € K?;

(d) If \—qk = @Mt (N—q~ k), for somem € 7, then V (r,\) is isomorphic
to M(a,py, where a = —q~*(A[m] — k[m — 1)) and § = ¢*a;

(e) If (k,\) satisfies neither of the conditions from (c) or (d), then V(k,\)
is isomorphic to M(x_g~1, x—qx), and is therefore simple.

6.3. Now we want to study the next simplest case, U,(sly)T. A PBW basis is
given by:
X = e, Xy = eze3 — ¢ 'esey, X3 = e,

Xy=e1Xo—q ' Xoey, Xs=eres—q lezer, and Xg=ey,
and we can take
A1 = X47
Ay = Xo X5 — ¢ " X3Xy,
Az =q? ((q — ¢ " )PXiXsXe — (¢ X1 X5 — (¢ — ¢ DX Xe + X4)7
21 = A1As,
Z2 = AQ.
The center is Z = K[z1, 22], and a basis for U,(sly)™ over N = K[A1, Ag, A3] is
{X{X5X5 | (a,b,¢) e N} U{X{XZXS | (a,b,0) € N}

U{XTX5XE | (a,b,¢) € NYU{XPXZXE | (a,0,0) € N}
U{X5X5XE | (a,b,¢) € NYU{X§X3XE | (a,0,0) € N},

which is already a considerably large set. Instead of inducing modules from N,
we would like to find a bigger subalgebra to induce from, so that U, (sls)™ is still
free over this larger subalgebra, but with a free basis that is somewhat easier to
manage.

Since X{X}, (a,b) € N?, are among the basis elements listed above, it is
clear that the g-commuting elements X1, Xg, A; and Ag are algebraically inde-
pendent, hence generate the quantum affine subalgebra

' =K[X;, Xs, A1, Az],
with relations X1X6 = X6X17 XIAQ = AQXl, XlAl = q_lAth XGAQ =
Ao X, XgA1 = qA1 X, A1As = Ay Ay, It is easily seen by our discussion in
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Section 5 that U, (sl4)* is free over I, with basis B = {X$X? | (a,b) € N} U
{X¢X? | (a,b) € N*}. Given (a, 3) € K2, there is a I-character determined by

X1|—>0, X@'—)O, A1'—>C¥, A2|_>B
Let V(4,) be the corresponding one-dimensional module, and set
Ma,p) = Ug(sla)™ @r Via,p)-

This is a cyclic U,(sls)T-module with a K-basis indexed by B, and if we make
the identifications

X;’Xg “ z%b, X§XE < 2%y ¢ a,bceN,

we see that this corresponds to the U, (sl;) T-module K[z, y*!], with action given
by:

er.ay = aq™[a + blzyP~ + Bla]ge bt gyt L ifh>1
L [a]zt~1yb—1 <0,
b,.a+1,b .
a b _ Ty ifb>0
€.y = { x0T Lyb if b <0,
. xayb _ _qa—b[a]xa—lyb+1 it b Z 0
3. aq[b _ a]xaylﬂ-l _ ﬁq[a]xa—lyb+1 it b S 1.

Similarly, we could have used the ['-character determined by
Xi—a, X8, A0, Ayreo,

for (o, 3,7) € K3, and the result would have been a U,(sl4)*-module Pla,g,7)s
isomorphic to K[z, y*!] with action:

b { quafbxayb + ,y[a]qfaberll.aflybfl if b Z 1
€eL.ry = —a—b .a,b a—1,b—1 :
Bq z%y° + [a]z* "y if b <0,
bo.at1,b .
ab q’x "y ifb>0
Qry = { xotlyb if b <0,
o xﬂyb _ aqa—bxayb _ qa—b[a]xa—lyb—i-l if b > 0
. aqafbxayb _ ,yq[a]xaflylﬂrl if b S —1.

Let us look at the module M, g) more carefully. We have,
Az’ = Pax®y®, Ay.x%y’ = 2%y’ and Ay’ = ¢ laz®y’,
for all @ € N and b € Z. Assume o # 0. Then there is a natural Z-grading

on M, g) given by setting deg (x%9®) = b for all b € Z. It has the additional
property that any submodule of M, g) inherits this grading. Note that the
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homogeneous subspace of degree k is K[z]y®. We will show now under the

assumption a # 0 that M, g) is simple. Let W be a nonzero submodule, and
take a nonzero homogeneous element of W, say p, which we can write as

p=(ap+az+...+ alxl)yb = aoyb + alxyb +...+ alcclyb7
where a; € K, a; # 0,1 > 0, and b = deg p.
Case 1: b > 0. Since
eh.p= (—l)lq_l(b_l)[l]!alybH,
we see that y**! € W, and hence so is
eyt = o 4 1)011.
It follows that 1 € W and so W = M, g), as 1 generates M, g).

Case 2: b < 0. As in the previous case, one sees from the following computa-
tions that 1 € W and W = M, g):

eip = allly
es Pyt = (—qa)!P[l - b]! 1.

So M,y is indeed simple for all pairs (a,) € K* x K. The center Z of
U,(sly)™ acts via

zm = o’m, (11)
zZm = fm, for allmEM(a,B), (12)

where 21, 22 are as in 6.3. The above equations show that if the modules M, g
and M, gy are isomorphic, then a? = (a')? and B = B, as their central
characters should be the same. Furthermore, the eigenvalues of the operator
A; on each module must coincide and hence o/ = ¢?a for some b € Z, which
forces a = o, as a® = («)?. Therefore the modules M, 5, are pairwise non-
isomorphic, and simple if a # 0. A similar argument shows that M, g is not
isomorphic to the module P, ;5 ) defined earlier or to any of its simple quotients
if a # 0, as the central element 2; annihilates P, s ).

Remark: The subalgebra of U,(sl4)* generated by the elements X1, Xg, Ay, Ao,
and Aj is isomorphic to quantum affine 5-space, but U, (sly)" is no longer free
over it, and in fact if we try to induce one-dimensional modules for this algebra
up to U,(sly)™, then corresponding to any character with Ay — A\, Az — pu,
and \ # u, we obtain just the zero U, (sls)"-module.
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