Abstract (EN):
A computationally efficient architecture to control formations of Autonomous Underwater Vehicles (AUVs) is presented and discussed in this article. The proposed control structure enables the articulation of resources optimization with state feedback control while keeping the onboard computational burden very low. These properties are critical for AUVs systems as they operate in contexts of scarce resources and high uncertainty or variability. The hybrid nature of the controller enables different modes of operation, notably, in dealing with unanticipated obstacles. Optimization and feedback control are brought in by a novel Model Control Predictive (MPC) scheme constructed in such a way that time-invariant information is used as much as possible in a priori off-line computation.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
6