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Abstract— A computationally efficient architecture to control
formations of Autonomous Underwater Vehicles (AUVs) is
presented and discussed in this article. The proposed control
structure enables the articulation of resources optimization with
state feedback control while keeping the onboard computational
burden very low. These properties are critical for AUVs systems
as they operate in contexts of scarce resources and high
uncertainty or variability. The hybrid nature of the controller
enables different modes of operation, notably, in dealing with
unanticipated obstacles. Optimization and feedback control are
brought in by a novel Model Control Predictive (MPC) scheme
constructed in such a way that time-invariant information is
used as much as possible in a priori off-line computation.

I. INTRODUCTION

The main goal of this article consists in the design of a
robust, computationally efficient, optimization-driven state-
feedback controller for Autonomous Underwater Vehicles
(AUVs). The research reported here constitutes in an im-
provement and refinement of the work from the authors in
[13]. The MPC scheme considered here reduces the on-line
computational burden by a priori processing off-line time-
invariant data which will be stored onboard, and by using low
computational mechanisms to use the stored data according
to the on-line circumstances. This is the essential feature of
the attainable set based MPC scheme first introduced in [14],
[11]. In this way, the following pertinent control features
for most of the mission scenarios involving AUVS are
guaranteed: (i) optimization driven, (ii) state feedback, and
(iii) computationally parsimonious. While the first feature is
essential due to the scarcity of onboard resources, the second
one is relevant as it allows to steer the AUV in environments
variable in time. The last feature is important due to the real-
time requirements, and to the relevance of sparing power in
the light of the first item.

The motivation to investigate sophisticated control
schemes relies on the need to satisfy increasingly complex
requirements arising in (i) knowledge of biological, geophys-
ical phenomena, (ii) Ocean and ocean-atmosphere interface
monitoring, (iii) surveillance for security and defense, and
(iv) territory management [24], [7], are some of the large
classes of challenges that are currently being addressed.

Here, we will focus in a very simple context in which an
AUV is endowed with motion adaptivity to unforeseen static
environment features (i.e., features that were not accounted
for in the planning stage), motion robustness to relatively
small perturbations, and, simultaneously, a certain level of
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sub-optimality can be guaranteed with a low computational
budget and in “real-time”.

This article is organized as follows: In the next section we
provide a succinct overview of the relevant state-of-the-art.
Then, we present and discuss the overall MPC AUV motion
control problem formulation. Then, in section IV, we present
and discuss the computationally efficient MPC scheme for
AUV motion control and point out some of its properties.
This section includes also a robust version of the basic
scheme as well as some results on the required approximation
procedures. In section V, we present and discuss the control
architecture in which the proposed Attainable Set MPC
scheme as well as some simulation results. The last section
presents some conclusions and an outline of future work.

II. STATE-OF-THE-ART

Motion control problems have been studied from many
angles and perspectives, even those arising from vehicles
moving in fluids which are particularly challenging: dis-
tributed nature, nonlinearities, significant uncertainties and
perturbations. A very good reference is [8]. It is not surpris-
ing the huge extent of pertinent literature that, obviously, can
not be covered in this section. Moreover, extended versions
of these control systems have been considered for multiple
vehicles. Non-linear control theory offers important results
underlying popular design techniques. As a small sample
we consider [19] giving a review of existing methods on
tight spacecraft formation flying using state feedback, [27]
discusses an approach for formation control using a virtual
structure, and [22] presents a back-stepping controller robust
to input constraints and parameter uncertainties for spacecraft
formations.

MPC is a well-known control strategy that defines a
control strategy by solving sequences of finite horizon open-
loop optimal control problems in a receding horizon fashion.
The optimal control framework endows MPC schemes with
a huge flexibility in handling control system with complex
dynamics while subject to constraints. As seen above, op-
timization based control is essential for AUVs control. A
selected sample of MPC schemes addressing a wide variety
of issues is: [10], [9] address underwater communication
constraints for formation control in a context of coopera-
tive control of a team of distributed agents, [16] and [17]
discuss a decentralized scheme for the coordinated control
of formations, being invariance and stability used to ensure
collision avoidance, [6] concerns leader-follower formations
in which the control inputs are forced to satisfy suitable
constraints that restrict the set of the leader possible paths by



using fast-marching methods, and [29] path following control
uses multi-objective nonlinear MPC for path following, and
trajectory tracking.

In spite of the much faster dynamics, MPC schemes have
also been used to control Unmanned Air Vehicles (UAVs):
[4] designed a distributed nonlinear controller for collision-
free formation flight, [26] addressed applications of output-
feedback for the problem of two UAVs tracking an evasive
moving ground vehicle, [3] - comprehensive framework for
the cooperative guidance of fleets of autonomous vehicles
combining collision and obstacle avoidance, formation flying
and area exploration, and [1] designed a path tracking
controller a tilt-rotor UAV carrying a suspended load.

However, all these MPC approaches suffer from several
key drawbacks for AUVs: (i) computationally intensive na-
ture, and (ii) parametrization to ensure convergence and
stability that does not take into account onboard sensing
capabilities. We address these key issues in this article.

III. AUV TRACKING CONTROL PROBLEM

In this section we consider the problem optimizing the
motion of an AUV in the sense that the integral error with
respect to a given reference trajectory and the total control
effort during a certain period of time should be minimized.
The optimal control framework is extremely appropriate to
address this problem as well as the various possibilities of
extending it to the context of formations of multiple vehicles.

The general optimal control formulation is

to+T
(P) Minimize g(z(to+T)) + t fo(t,z(t),u(t))dt
subject to z(t) = f(t, z(t), Qj(t)) L—a.e.
ut) e L—ae, z(to+T)eCs
h(t,z(t)) <0, g(t,2(t),u(t)) <0

where g is the endpoint cost functional, fj is the running cost
integrand, f, h, and g represent, respectively, the vehicle
dynamics, the state constraints, and the mixed constraints,
C is a target that may also be specified in order to ensure
stability.

To see how (P) encompasses the AUV formation of N
vehicles motion problem of tracking of a given reference
trajectory, consider, for the AUV 1,

e x=col(n’,v'), u=r7% and g(-) =0,

o Jolt,w,w)=(n (¢)) T Qy'ni Hr'T Rr'), where ni(-)

is the reference trajectory for the i*" vehicle.

e By letting for each vehicle (we drop the index i

for easier reading) the state be n = [z,y,9]T
v = [u,v,7]T, and the controls be 7 = [r,, 7|7, the
dynamics are, [8] and [25], where 1), and » satisfy:

. Tu—(Mm—Y3)vr—Xy o u|ul
ucos(y) — vsin(y)

u sin v COS
() +veos(v) | o s ,
r Tr— (Yo —Xuo)uv—=Npjp 7|7
I..—Ny

m—Xq
(m—=Xg)ur—Y, yv|v]

respectively. Here, X, Yy, N; the hydrodynamic added
mass coefficients, Xy, Yy|y|> Vr|r| the hydrodynamic
drag coefficients, and m the vehicle mass.

o This accommodates a wide variety of other constraint
types, notably,
— time endpoints of the state, n°(t +T) € Ciyr,
— control, 7¢(s)eU?,
— state variable, (n'(s), v (s))€S%;
— communication g5 ;(n*(s), 7’ (s))€ Cf ;,¥i€G° (i),
and
- formation g{j(ni(s) I(s ))Gszj,Vjegf(i).
See [12] for additional details on optimal control of AUV
formations.

The MPC enables to conciliate, sub-optimization with
feedback control. This is relevant due to the need to deal
with the combination of the onboard resources scarcity with
the significant variability and uncertainty encountered in
the underwater milieu. The MPC scheme consists in, at
each sampling time, computing the control action for the
current control horizon by solving the on-line optimal control
problem (P) over the larger prediction horizon with the state
variable initialized at the current best estimate updated with
the latest sampled value. Then, the optimal control sequence
is applied to the plant during the control horizon and, once
this interval elapses the new current time is updated and
the process is repeated. Details, including implementation,
of this standard MPC algorithm can be found in [11].

Unfortunately, computational complexity of (P) is very
high, and, thus, of difficult online implementation. The
issue is further aggravated for decentralised implementations
required by many practical applications. This hard challenge
motivates the novel approach which is an improved and more
refined version of the one proposed in [13].

IV. ATTAINABLE SET MPC

In this section we present additional results concerning the
attainable set based MPC scheme discussed in [13]. There
are two key ideas underlying this novel scheme:

« Replace the infinite dimensional optimal control prob-
lem by a finite dimensional one. This requires two
steps: (i) time backward propagation of the overall
the cost functional, and (ii) time forward propagation
the attainable set starting on the current value of the
sampled state variable.

o Use time-invariant data to pre-compute off-line all the

ingredients - notably a reference short term attainable
set, and the value of the value function in an appropriate
grid of points - required on-line (feedback synthesis) as
a function of a number of parameters that depend on a
number of typified circumstances.
This data is stored onboard in a look-up table, and the
operations (rotations, translations, and extrapolations)
to adapt on-line either the attainable set or the value
function to the current circumstances (¢, x) are compu-
tationally inexpensive.

A. Short term
Sets

Let us consider the optimization of a dynamic control
system over a long time horizon [0, T], with, possibly T' =

“equivalent” cost functional and Attainable



oo. In this later case, we consider trajectories converging

asymptotically to some equilibrium point.
Ty

By defining V (¢, z):= min {g(f)—i—/l(T,;v(T)m(T))dT}
uell £€CF "
with z(Ty)=¢, z(t)==z, &(7)=f(7,2(7),u(7)), L-a.e. and
by taking into account the Principle of Optimality (i.e., for
T < Ty, the solution to (Pr,) restricted to the interval [, 4
T1] is also a solution to (Pr)), we establish the equivalence
on the interval [¢,¢ + T of the problems:
+T
VT, z(t+T)) + | (7, 2(7),u(T))dr
¢

s.t. a(7) = f(r,z(7),u(r)),

u € U, and x(t) is given,

(PT) Min
L—a.e.
and T
(Pr;) Minimize  g(x(Ty)) —&—/t 1(t, z(t), u(t))dt

(t) = f(t,x(t),u(t)), L — a.e.
z(Ty) € Cy, x(t) is given, u € U.

[0,Tf] = R™ : u(t) € Q},

subject to

where T < Ty, and U := {u :
with Q closed.

In what follows, we need the definition Forward Attainable
Set (see [15], [30], [21]). Let tg < t,

Ag(tito, xo) := {a(t): a=f(t, x,u), u€ld, x(to)=x0}.

Notice further that, with a standard change of variable y =
I(t,z,u), with y(0) = 0, the running cost can be eliminated.
Let V(t,#) = V(t,x) +y where & = (z,y). Without
relabeling, (Pr) can be formulated only in terms of the
Forward Attainable Set and the Value Function.

(P£) Minimize

subject to

Vit+T,z(t+T))
z(t+T) e Ap(t +Tst,x(t)).

Two important remarks are in order.

e The computation of the Attainable Set is, in general,
an extremely costly task, generating large amount of
data. This leads to the need of resorting to some kind
of approximation. There are three main possibilities: (i)
Polyhedral which may be of either inner or outer type,
[2], [15]; (i) Ellipsoidal, [20]; and (iii) Cloud of points
as endpoints of trajectory segments generated by con-
stant controls. While the first two seem to be of lower
complexity due to their reduced number of parameters,
the high on-line computation that they entail, makes the
third alternative more attractive given the strict real-time
constrains.

« For positional systems, [18], - this is not a very restric-
tive requirement - the value function may be computed
by solving the Hamilton-Jacobi equation (HJE). In gen-
eral, the value function is, at most, merely continuous,
and, thus, the partial derivatives have to be understood
in a generalized sense, and the solution concept has to
be cast in a nonsmooth context. For details and multiple
possibilities, check [5]. Solving HJE numerically is
extremely computationally intensive for which here are
a number of software packages, e.g., [28], [23].

In practical situations, we consider a number of value
functions each one associated with a reasonable number
of typified situations (which are strongly application de-
pendent). During the real-time execution of the “mission”,
the relevant value function is identified via sensed data
and invoked to determine the next optimal control at any
point (¢, x). Proper extrapolation techniques can be use to
handle situations that do not fully fall in any one of the
considered typified situations. “Extraordinary” events, such
as the emergence of unmapped obstacles, imposes the need
to change the value function. This will be considered in the
next section.

Let T be the optimization horizon, A the control horizon,
and ¢ the current time. Then, the Attainable Set MPC (AS-
MPC) scheme is as follows:

Initialization: ¢ = g, x (o)

Solve (P%) over [t,t+ T to obtain u*

Apply u* during [t,t + A]

Sample = at ¢t + A to obtain T = z(t + A)

Slide time, ie., t = t + A, update the Attainable
Set from the new x(t¢) by appropriate translation and
rotation, update the value function at the new ¢ + T if
necessary, and goto 2.

Clearly, the real-time computational burden of this scheme
is, in general, very low as it involves only very simple
computational operations.

The simplicity of the on-line optimization problem is
due to the fact that most of the computational burden is
transferred to the off-line stage and this is due to the time
invariance of the problem’s data. In figure 1, it is shown (i)
the forward attainable set for the unicycle, and (ii), the value
function in the absence of obstacles. Here, the value function
is computed by using its definition, i.e., by solving several
optimal control problems with different initial conditions
spanning the given state space region of 4 m by 10 m. The
value function isolines are shown with the darkest colors
closer to the minimum, i.e., the target. Each problem is
of the type of (Pr) and took approximately 3 seconds to
compute by ACADO solver on a i7-7500CPU @ 2.70GHz
computer and gave rise to a set of trajectories starting from
the state space partition points and converging to the final
target. However, computing the optimal trajectory by solving
(Pg), requires only 0.05 seconds, i.e., it is 60 times faster.
The controls to be applied to the vehicle are found by
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Fig. 1.
searching for the minimum value within the vehicle’s forward
attainable set.

Under mild assumptions on the data and, by using the
fact that the value function is continuous, it has been shown

i) AUV forward attainable set, and ii) Value function



that this scheme is robust. Stability is proved by showing
that there exists an uniform neighborhood along the refer-
ence trajectory for in which the value function satisfies a
Lyapunov inequality in a generalized sense.

B. Some Auxiliary results

From the continuity of the value function, we obtain sub-
optimality estimates in both global and local senses as it
follows from the asymptotic performance convergence result
below. Let T', and A, be, respectively, the optimization and
control horizons, and denote by (27 A, u7 ») the associated
MPC optimal control process. Let .J(x,u) be the value of
the cost functional associated with the (z,u) over [0,00),
by J(z,u)|[,5 be its restriction to the interval [, (], and
by Ji(x,u) its restriction to the interval [kA, (kK + 1)A].

Proposition 1. Let Ty = oo and assume that the optimal
control horizon has an optimal control process (x*,u*) such
that tlim x*(t) = &, being £* an equilibrium point in Cy.
— 00
Then, o
O fi D via) = I )
(i) lim [ Ji(2 o, wh )= (&%, 0) o, (et 1) a] |=0.
k—o0

The proof is straightforward and an be found in [11].

Since we are using a cloud of points in the state space
reached by constant controls as approximation to the Attain-
able Set, a good estimate of the Hausdorff distance between
these sets to determine the nonconservative worst case of
the degree of sub-optimality. Denote the Hausdorff distance
between A and B by dy (A, B) which is defined by

dH<A,B>::Inax{;gg{d3<x>hjgg{dA@n}},

being d 4(a) the Euclidian distance between the point a and
the set A.

For the next result, the following mild assumptions are
required on the dynamics: (i) u€L*>® with u(t)eQCR™, (ii)
2 is compact and convex, (iii) x — f (¢, z, u) is K Lipschitz
continuous V(t, u) € Rx(), and Lebesgue-Borel measurable
in (t,u) for all x€ R™, (iv) f is continuous in u, and (v)
V(t,z)e RxR"™, and 3K > 0 such that || f(¢,z, Q)| <K.

Let €. denote the set {u; € Q:i=1,..., N.} satisfying
the following properties: a) QCUZN;l(ui +¢eB), and b) Vi 3j
st || f(t ) — f(t,z,u))|| <e.

Denote by Ay (t1;t0, x) and A% (t1;to, x) the set of points
attainable at t; > ty from x at time %y, by the dynamic
system with controls, respectively, in L>° with values in €2,
and piecewise constant with values in 2.

Proposition 2. Let A > 0. Then, V(¢,z)€ RxR™, we have
dy (Ap(t+ At z), A7 (t+ At x)) < Ale + AKfK).

The proof of this result is long and we refer to [11].
Another issue that arises in this approach concerns the fact
the point Z in the state space to which the system is steered
at a given time is very likely not be listed in the look-up
table specifying the value function V. Although, typically

the value function is not smooth, the fact that the effect of
state constraints is incorporated in the form of a penalization,
one can assert that it is continuous, and, thus, a generalized
gradient, denote below by VV, is bounded everywhere.

Proposition 3. Assume that the value of V' at x is not known,
and that there is a grid of points G5 in R™ is such that the
maximum distance between neighboring points in G is less
than § > 0.

Then, there is a simplex, i.e., a set of n + 1 points in
independent position, Sz = {x; : ¢ = 1,...n+ 1} which are
the closest to Z being an estimate Vof Vatz given by

ooy _ iy Villg — il
V(I) = - n+1 = _
S e — ]!
where, fori = 1,...,n+1, V; = V(z;) + VV(z;) - v;, with
U = T — x; and the n X (n + 1) unknowns of the vectors
VV(x;),i=1,...,n+1 are given as a solution of the set
of n+ 1 set of equations

VV(.’L'Z') . (T)i — ’Uk) =

Moreover, for some ¢ > 0,

Vizk) — V(i)
i — |

V@) = V@l < max (V@) = Vy)l}+co
The proof of this result is long and we refer to [11].

C. The Robust Attainable Set MPC Scheme

The fact that the vehicle is in open-loop control mode in
the interval [¢, ¢+ A] makes it vulnerable since, even small but
persistent perturbations may prevent the vehicle of reaching
the intended point z* at time ¢ + A. This can be addressed
by (i) considering an appropriate sub-optimality of z*, (ii)
introducing a number Np of low complexity intermediate
steps of length A, and (iii) replacing step 3 of the AS-MPC
scheme by
3) Compute z*=arg min{V (t+A, z) : z€A;(t+A;¢,2(t))}
For i =1 to Np, compute

2reAf(t+iA t+(i—1)A, 25 )NAp(t+iAs t+A, %)
u? driving the state from z} | to z on [t+(i—1)A, t+
Al
Here, A = NrA, zi, = 2z, and 25 = z(t), and
Ap(tit, zp) == {z € IR" : zy € As(t;7,2)}, with 7 < ¢,
denotes the Backward Attainable Set (see [30], [21]).

All the previous considerations on the AS-MPC scheme

migrate to this Robust AS-MPC (RAS-MPC) scheme.

V. THE CONTROL ARCHITECTURE

Given the high variability of the environment due to unex-
pected events, notably the emergence of unmapped obstacles,
requires the embedding of the RAS-MPC controller de-
scribed in the previous section in a control architecture. This
provides the logic presiding the articulation of the different
modes of operation. Figure 2 shows the system automaton
representing the highest layer of the control architecture. In
order to facilitate the explanation of the main idea, we focus
solely in the motion control for a single AUV in the plane
endowed with the capability of locally optimizing trajectories
while avoiding collision with unexpected obstacles with data
from a rotating pointed range finder. Moreover, we impose
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Fig. 2. Main System Automaton

the general assumption that the set of unmapped obstacles are
relatively sparse (albeit some might be close to one another)
and each obstacle is locally a circle. The latter can be justified
by the fact that this circle is estimated as the one with the
smallest radius that includes all detected points.

In figure 3, we depict the events, and associated transitions
that might arise in a still simple conceptual automaton.

No obstade in
range

l Obst. Inrange
Reset
(Manual)
Characterize \
obstade B
Failed
Obst. Abort
Overcome i Complete P misson
Failed
Re-planto
overcome <
obstade
l Complete Update ahead
obstade
Overcoming e
obstade \No T Yes
Obstade is New obstadle
not distinct detected “Safe Passage”
test
Characterize 71/,//‘
“new” obstade Obstadeis
distinct
Fig. 3. Obstacle Collision Avoidance Automaton

In order to explain the Obstacle Collision Avoidance
Automaton, we assume that range finder sensor detects
obstacles from a distance significantly larger than the one
transversed by the vehicle in the time interval of length A
and its direction can vary between the limiting angles 6,44
and —0,00-

Once an obstacle is detected, an exploratory search of
the range finder enables to determine the location of both
outer limits of the obstacle required to define the best way
to overcome it for the current mission target or waypoint.
For this purpose, the Value Function of the RAS-MPC is
modified by adding an appropriate positive valued function
penalizing the approximation to the obstacle which has a
minimum at a safety distance ds to the obstacle.

It may well happen that while circumventing an obstacle,
a possibly new obstacle is detected. In this case, the range
finder proceeds with the characterization of the eventual
“new” obstacle. If it is concluded that it is really a new
obstacle and that the path between both obstacles is the
optimal, then it is necessary to determine wether the passage
is safe or not.

The overall control system requires the characterize the
degree and nature of the AUV situational awareness, being

Fig. 4.

Safe passage detection

the articulation provided by the Control Architecture (CA).
The perception issues fall outside the scope of this article,
and, thus, we just illustrate the way the proposed MPC
scheme, accommodates unexpected significant events in the
context of the CA by taking into account onboard sensing
devices. Figure 4 helps to understand how the criterion
for this decision is defined. Observe that the passage is
safe if Hi+Hy—R1—Rs—2ds > 0 where ds is a design
parameter, Ry, Ro, C1, Co, and Pp, are estimated with the
range finder, H1=+\/R?+L?%, Hy=+\/R3+L3, Lo=|P,—A|,
Ly=|APyH+/(Ri+ds)?>—R?|, Py is the AUV position, and
A is the intersection point of segments Cy,Cs and Py, Pr,.

Figure 5 shows simulation results obtained with the pro-
posed CA. The AUV departs from A to get to B. At time ¢,
the obstacle O; is detected. The Value Function is changed
in a neighborhood of O; by adding a penalization function
to prevent collision. This forces the vehicle to overcome the
obstacle by the right. While circumventing O1, at time ¢5, the
object O is detected. Its characterization reveals that a path
between O; and Os is optimal. Since O is still the closest
obstacle, the current perturbed Value Function is kept while
the system decides whether there is a safe passage. At time
t3, there is enough information to conclude that the passage
between O; and O, is safe and the Value Function is now
locally changed to prevent collisions with either obstacle.
The path is now chosen by the left of O as it minimizes
the Value Function. The same rationale is applied at time ¢4
when Os is detected. A safe passage between Oz and O3
is detected and the path to B is straightforward. Had the
distance between O and O3 been such that the passage was
unsafe, a not-so-optimal solution would have been obtained
as the traveled distance by the left of O3 would be longer
than the one by the right of Ox.

Obviously, this scheme with locally based decisions does
not guarantee the overall optimality. However, the sparser
the unmapped obstacles are, the better approximation to
optimality is achievable.

Figure 6 presents simulation results on a triangle formation
of AUVs with one leader and two followers tracking a
sinusoidal trajectory. The leader can communicate with each
follower but the followers can not communicate between
them. At some point in time, the leader’s range finder detects
an obstacle and changes its path to avoid the collision and
in such a way that each one of the followers also can do it




Fig. 5. Obstacle avoidance simulations results
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Fig. 6. Tracking with RAS MPC formation control with obstacle avoidance

without distorting the formation.
VI. CONCLUSIONS

In this article, a novel RAS-MPC scheme that enters into
account the specific requirements arising in AUV motion
control is introduced. The key drivers of the approach con-
cerns the mitigation of the real-time computational burden
and the ability of adapting to unmapped obstacle avoidance.
While the former is motivated by limited onboard energy
and computational power, in a context of strict real-time
constraints, the presented CA shows the flexibility of the
RAS-MPC scheme to handle unmapped obstacle. The math-
ematical details had to be omitted due to the lack of space.
However, the obtained simulation results are a good illustra-
tion. The next step concerns the control implementation in
the AUV onboard control software for field testing.
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