Abstract (EN):
In this paper, we propose a Nonlinear Model Predictive Control (NMPC) approach that is employed by an Autonomous Underwater Vehicle (AUV) to track and estimate a moving target using range measurements. Due to the nonlinearities in the observation model associated with range-only measurements, there exist state and input trajectories of the AUV that makes the position of the target unobservable. To address this problem, a standard stabilizing NMPC based approach augmented with an economic cost function is utilized to steer the system through highly observable trajectories in order to guarantee a good estimate of the position of the target. The efficacy of the proposed solution is demonstrated through simulations. © Springer International Publishing AG 2018.
Language:
English
Type (Professor's evaluation):
Scientific