Go to:
Logótipo
You are in:: Start > Publications > View > Essentially quasi-duo rings
Map of Premises
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática
Publication

Essentially quasi-duo rings

Title
Essentially quasi-duo rings
Type
Another Publication in an International Scientific Journal
Year
2025
Authors
Christian Lomp
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Yousif, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Zhou, Y
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 24
Pages: 161-174
ISSN: 0271-4132
Scientific classification
CORDIS: Physical sciences > Mathematics > Algebra
FOS: Natural sciences > Mathematics
Other information
Authenticus ID: P-01A-V4B
Abstract (EN): <p>A ring with identity is called essentially right quasi-duo if every essential maximal right ideal of it is a two-sided ideal. Essentially right quasi-duo rings generalize essentially right duo rings, a notion that arose in the study of hypercyclic rings, and right quasi-duo rings, as introduced by S.H. Brown. We prove that a ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is essentially right quasi-duo if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is semisimple or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R slash upper S o c left-parenthesis upper R Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>S</mml:mi> <mml:mi>o</mml:mi> <mml:mi>c</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">R/Soc(R_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is right quasi-duo. Although it is still unknown, whether a right quasi-duo ring is left quasi-duo, we provide an example of an essentially right quasi-duo ring that is not essentially left quasi-duo. Furthermore, while exchange right quasi-duo rings are known to be clean, there exist exchange essentially right quasi-duo rings that are not clean. A thorough study of essentially right quasi-duo rings is carried out and their relationship to skew power series rings, trivial extensions and formal triangular matrix rings is explored.</p>
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) (2021)
Another Publication in an International Scientific Journal
Zhou, J; Zhou, J; Zhou, J; Zhou, J; Zhou, K; Zhou, R; Zhou, XJ; Zhou, Y; Zhou, Y; Zhou, Y; Zhou, ZY; Zhou, Z; Zhu, B; Zhu, C; Zhu, GQ; Zhu, H; Zhu, H; Zhu, H; Zhu, WG; Zhu, Y...(mais 2909 authors)

Of the same journal

Stability of equilibria in equations of Hodgkin-Huxley type (2004)
Another Publication in an International Scientific Journal
Labouriau, IS; Rito, CMSG
PREFACE (2024)
Another Publication in an International Scientific Journal
Gothen, PB; Melo M.; Teixidor i Bigas M.
On the splitting of the dual Goldie torsion theory (2000)
Another Publication in an International Scientific Journal
Christian Lomp
A Parametric Family of Subalgebras of the Weyl Algebra II. Irreducible Modules (2013)
Another Publication in an International Scientific Journal
Georgia Benkart; Samuel A Lopes; Matthew Ondrus
On the Semiprime Smash Product Question (2015)
Article in International Conference Proceedings Book
Christian Lomp
Recommend this page Top
Copyright 1996-2026 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2026-02-06 at 14:22:18 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book