Go to:
Logótipo
You are in:: Start > Publications > View > Unraveling the cGAS catalytic mechanism upon DNA activation through molecular dynamics simulations
Map of Premises
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática
Publication

Unraveling the cGAS catalytic mechanism upon DNA activation through molecular dynamics simulations

Title
Unraveling the cGAS catalytic mechanism upon DNA activation through molecular dynamics simulations
Type
Article in International Scientific Journal
Year
2021
Authors
Soler, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Paiva, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Ramos, MJ
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Brut, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 23
Pages: 9524-9531
ISSN: 1463-9076
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00T-V8V
Abstract (EN): Cyclic GMP-AMP Synthase (cGAS) is activated upon DNA binding and catalyzes the synthesis of 2 ',3 '-cGAMP from GTP and ATP. This cyclic dinucleotide is a messenger that triggers the autoimmune system of eukaryotic cells. In this study, we propose a Molecular Dynamics (MD) investigation of cGAS activation. We notably provide insights into the motion of the activation loop, both from a mechanical point of view and considering its role in the catalysis of cGAMP production. We finally shed light on the reaction resulting in cGAMP synthesis. Two possible catalytic routes (referred to as GTP-ATP and ATP-GTP) are proposed based on the active site occupancy, paving the way toward further exploration of the reaction mechanism.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 8
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Challenges in spectroscopy: accuracy versus interpretation from isolated molecules to condensed phases (2019)
Another Publication in an International Scientific Journal
Puzzarini, C; Pilar de Lara Castells, MP; Ramos, MJ
3D structure of the electric double layer of ionic liquid–alcohol mixtures at the electrochemical interface (2018)
Article in International Scientific Journal
J. M. Otero-Mato; Hadrián Campos; O. Cabeza; D. Diddens; A. Ciach; L. J. Gallego; L. M. Varela
Why are some cyano-based ionic liquids better glucose solvents than water? (2016)
Article in International Scientific Journal
Batista, MLS; Passos, H; Henriques, BJM; Maginn, EJ; Pinho, SP; Freire, MG; Gomes, JRB; Coutinho, JAP
What does an ionic liquid surface really look like? Unprecedented details from molecular simulations (2011)
Article in International Scientific Journal
Gyoergy Hantal; Natalia N D S Cordeiro; Miguel Jorge
Voltage-polarity dependent multi-mode resistive switching on sputtered MgO nanostructures (2017)
Article in International Scientific Journal
Dias, C; Guerra, LM; Bordalo, BD; Lv, H; Ferraria, AM; Botelho do Rego, AMB; Cardoso, S; Freitas, PP; ventura, j.

See all (93)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-07-22 at 05:32:51 | Acceptable Use Policy | Data Protection Policy | Complaint Portal