Go to:
Logótipo
You are in:: Start > Publications > View > Optimal resilient allocation of mobile energy storages considering coordinated microgrids biddings
Map of Premises
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática
Publication

Optimal resilient allocation of mobile energy storages considering coordinated microgrids biddings

Title
Optimal resilient allocation of mobile energy storages considering coordinated microgrids biddings
Type
Article in International Scientific Journal
Year
2022
Authors
Sadegh, AR
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Nazar, MS
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Shafie-khah, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Applied EnergyImported from Authenticus Search for Journal Publications
Vol. 328
ISSN: 0306-2619
Publisher: Elsevier
Indexing
Other information
Authenticus ID: P-00X-CZY
Abstract (EN): This paper presents an algorithm for optimal resilient allocation of Mobile Energy Storage Systems (MESSs) for an active distribution system considering the microgrids coordinated bidding process. The main contribution of this paper is that the impacts of coordinated biddings of microgrids on the allocation of MESSs in the day-ahead and real-time markets are investigated. The proposed optimization framework is another contribution of this paper that decomposes the optimization process into multiple procedures for the day-ahead and real-time optimization horizons. The active distribution system can transact active power, reactive power, spinning reserve, and regulating reserve with the microgrids in the day-ahead horizon. Further, the distribution system can transact active power, reactive power, and ramp services with microgrids on the real-time horizon. The self -healing index and coordinated gain index are introduced to assess the resiliency level and coordination gain of microgrids, respectively. The proposed algorithm was simulated for the 123-bus test system. The method reduced the average value of aggregated operating and interruption costs of the system by about 60.16% considering the coordinated bidding of microgrids for the worst-case external shock. The proposed algorithm successfully increased the self-healing index by about 49.88% for the test system.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 27
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Probabilistic multicriteria environmental assessment of power plants: A global approach (2020)
Another Publication in an International Scientific Journal
Isabel Soares; Juan Jose Cartelle Barros; Manuel Lara Coira; María Pilar de la Cruz López
On the right track? Energy use, carbon emissions, and intensities of world rail transportation, 1840-2020 (2024)
Another Publication in an International Scientific Journal
Tostes, B; Henriques, ST; Brockway, PE; Heun, MK; Domingos, T; Sousa, T
Electromagnetic energy harvesting using magnetic levitation architectures: A review (2020)
Another Publication in an International Scientific Journal
António Torres Marques; Pedro Carneiro; Marco P. Soares dos Santos; André Rodrigues; Jorge A.F. Ferreira; José A.O. Simões; Andrei L. Kholkin
1D + 3D two-phase flow numerical model of a proton exchange membrane fuel cell (2017)
Article in International Scientific Journal
Rui B. Ferreira; Daniela S. Falcão; Vânia B. Oliveira; Alexandra M. F. R. Pinto
Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques (2013)
Article in International Scientific Journal
Carvalho, D; Rocha, A; Pereira, R

See all (43)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-08-23 at 04:58:54 | Acceptable Use Policy | Data Protection Policy | Complaint Portal