Go to:
Logótipo
You are in:: Start > Publications > View > On the computational treatment of fully coupled crystal plasticity slip and martensitic transformation constitutive models at finite strains
Map of Premises
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática
Publication

On the computational treatment of fully coupled crystal plasticity slip and martensitic transformation constitutive models at finite strains

Title
On the computational treatment of fully coupled crystal plasticity slip and martensitic transformation constitutive models at finite strains
Type
Article in International Scientific Journal
Year
2022
Authors
de Carvalho, MV
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Coelho, RPC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00W-SH6
Abstract (EN): In this article, four numerical techniques are formulated to improve the reliability and numerical efficiency of stress update algorithms of crystal-plasticity-like phenomena at finite strains. The resulting algorithmic setting is especially relevant for structural analyses of polycrystals and the multiscale evaluation of anisotropic microstructures in metallic materials. These techniques are exemplified with a constitutive model, which couples crystallographic slip and martensitic transformation deformation mechanisms with a viscous regularization. The model is characterized by a set of highly coupled equations expressed in a single system and solved by a monolithic solution procedure. The first technique employs a sub-stepping procedure to generate a better initial guess for the Newton-Raphson scheme used in the iterative solution of the equilibrium problem at the Gauss quadrature point. Then, a logarithmic discretization of the exponential parameter of the viscoplastic law is proposed to approximate the target value of the exponential parameter incrementally in the return mapping algorithm. A strategy to remove the strain-rate dependence and reduce the necessary viscoplastic parameters is also presented to help with the stiff equations that arise in the rate-independent limit. Finally, an efficient strategy is suggested to complete the transformation process when the full martensitic transformation is approached. These techniques can be easily used in any combination and dramatically improve the model's efficiency by enabling more significant incremental steps to be used within the monolithic solution procedure. A thorough assessment of their impact is shown in a series of ablation studies.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 46
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Transient Dynamic Non-Linear Analysis of Arbitrary Thin Shells (1982)
Article in International Scientific Journal
Lúcia Maria Dinis; D. Owen
Thin Plate Semiloof Element for Structural Analysis - Including Stability and Natural Vibrations (1978)
Article in International Scientific Journal
R. A. F. Martins; D. Owen
The natural radial element method (2013)
Article in International Scientific Journal
Belinha, J; Dinis, LMJS; Natal Jorge, RMN
The modelling of multi-fracturing solids and particulate media (2004)
Article in International Scientific Journal
D. R. J. Owen; Y. T. Feng; E. A. de Souza Neto; M. G. Cottrel; F. Wang; F. M. Andrade Pires; J. Yu

See all (31)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-09-28 at 03:25:41 | Acceptable Use Policy | Data Protection Policy | Complaint Portal