Abstract (EN):
Background and Objective: Glaucoma, an eye condition that leads to permanent blindness, is typically asymptomatic and therefore difficult to be diagnosed in time. However, if diagnosed in time, Glaucoma can effectively be slowed down by using adequate treatment; hence, an early diagnosis is of utmost importance. Nonetheless, the conventional approaches to diagnose Glaucoma adopt expensive and bulky equipment that requires qualified experts, making it difficult, costly and time-consuming to diagnose large amounts of people. Consequently, new alternatives to diagnose Glaucoma that suppress these issues should be explored. Methods: This work proposes an interpretable computer-aided diagnosis (CAD) pipeline that is capable of diagnosing Glaucoma using fundus images and run offline in mobile devices. Several public datasets of fundus images were merged and used to build Convolutional Neural Networks (CNNs) that perform segmentation and classification tasks. These networks are then used to build a pipeline for Glaucoma assessment that outputs a Glaucoma confidence level and also provides several morphological features and segmentations of relevant structures, resulting in an interpretable Glaucoma diagnosis. To assess the performance of this method in a restricted environment, this pipeline was integrated into a mobile application and time and space complexities were assessed. Results: Considering the test set, the developed pipeline achieved 0.91 and 0.75 of Intersection over Union (IoU) in the optic disc and optic cup segmentation, respectively. With regards to the classification, an accuracy of 0.87 with a sensitivity of 0.85 and an AUC of 0.93 were attained. Moreover, this pipeline runs on an average Android smartphone in under two seconds. Conclusions: The results demonstrate the potential that this method can have in the contribution to an early Glaucoma diagnosis. The proposed approach achieved similar or slightly better metrics than the current CAD systems for Glaucoma assessment while running on more restricted devices. This pipeline can, therefore, be used to construct accurate and affordable CAD systems that could enable large Glaucoma screenings, contributing to an earlier diagnose of this condition. © 2020
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
8