Resumo (PT):
Abstract (EN):
The presence of pharmaceuticals in water sources, including in drinking water (DW), is increasingly being recognized as an emerging and global concern for the environment and public health. Based on the principles of the "One Health" initiative, the present work aims to understand the effects of clofibric acid (CA), a lipid regulator, on the behavior of a selected bacterium isolated from drinking water (DW). Biofilms of the opportunistic pathogen Stenotrophomonas maltophilia were exposed to CA for 12 weeks at 170 and 17000 ng/L. The effects of CA were evaluated on planktonic S. maltophilia susceptibility to chlorine and antibiotics (amoxicillin, ciprofloxacin, erythromycin, kanamycin, levofloxacin, oxacillin, spectinomycin, tetracycline and trimethoprim-sulfamethoxazole), biofilm formation, motility, siderophores production and on the adhesion and internalization of the human colon adenocarcinoma cell line (HT-29). It was found that CA did not affect planktonic S. maltophilia tolerance to chlorine exposure. Additionally, no effects were observed on biofilm formation, motility and siderophores production. However, biofilms formed after CA exposure were more tolerant to chlorine disinfection and lower CFU reductions were obtained. Of additional concern was the effect of CA exposure on S. maltophilia increased tolerance to erythromycin. CA exposure also slightly reduced S. maltophilia ability to invade HT-29 cells. In conclusion, this work reinforces the importance of studying the effects of non-antibiotic contaminants on the behavior of environmental microorganisms, particularly their role as drivers affecting resistance evolution and selection. (C) 2019 Elsevier Ltd. All rights reserved.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
9