Go to:
Logótipo
You are in:: Start > Publications > View > Tunable Sparse Network Coding
Map of Premises
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática
Publication

Tunable Sparse Network Coding

Title
Tunable Sparse Network Coding
Type
Article in International Conference Proceedings Book
Year
2012
Authors
Soheil Feizi
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Daniel E. Lucani
(Author)
FEUP
Muriel Médard
(Author)
FEUP
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Conference proceedings International
Pages: 107-110
International Zurich Seminar on Communications (IZS 2012)
Zurich, Switzerland, Fevereiro 29 a Março 2 de 2012
Scientific classification
FOS: Engineering and technology > Electrical engineering, Electronic engineering, Information engineering
CORDIS: Technological sciences > Engineering > Communication engineering > Telecommunications engineering
Other information
Resumo (PT): A fundamental understanding of the relationship between delay performance and complexity in network coding is instrumental towards its application in practical systems. The main argument against delay-optimal random linear network coding (RLNC) is its decoding complexity, which is O(n^3) for n original packets. Fountain codes, such as LT and Raptor codes, reduce the decoding load on the receiver but at the cost of introducing additional, non-negligible delay. The source of this increased delay is the inherent sparsity of the code, which significantly reduces the impact of a new coded packet, i.e., the probability of a packet to be linearly independent from the knowledge at the receiver, as we approach the end of the transmission (when few degrees of freedom are missing). Thus, the additional overhead is mainly due to the transmission of the last data packets. Our key observation is that switching gears to denser codes as the transmission process progresses could considerably reduce the delay overhead while maintaining the complexity advantages of a sparse code. We propose tunable sparse network coding as a dynamic coding mechanism with a code structure with two regions: a sparse region, with various levels of sparsity, and a dense region, where packets are generated as per RLNC. We characterize the problem in multicast sessions on general networks and illustrate trade-offs in especial cases of interest. We also present a novel mechanism to perform efficient Gaussian elimination for sparse matrices that guarantees linear decoding complexity with high probability.
Abstract (EN): A fundamental understanding of the relationship between delay performance and complexity in network coding is instrumental towards its application in practical systems. The main argument against delay-optimal random linear network coding (RLNC) is its decoding complexity, which is O(n^3) for n original packets. Fountain codes, such as LT and Raptor codes, reduce the decoding load on the receiver but at the cost of introducing additional, non-negligible delay. The source of this increased delay is the inherent sparsity of the code, which significantly reduces the impact of a new coded packet, i.e., the probability of a packet to be linearly independent from the knowledge at the receiver, as we approach the end of the transmission (when few degrees of freedom are missing). Thus, the additional overhead is mainly due to the transmission of the last data packets. Our key observation is that switching gears to denser codes as the transmission process progresses could considerably reduce the delay overhead while maintaining the complexity advantages of a sparse code. We propose tunable sparse network coding as a dynamic coding mechanism with a code structure with two regions: a sparse region, with various levels of sparsity, and a dense region, where packets are generated as per RLNC. We characterize the problem in multicast sessions on general networks and illustrate trade-offs in especial cases of interest. We also present a novel mechanism to perform efficient Gaussian elimination for sparse matrices that guarantees linear decoding complexity with high probability.
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same scientific areas

Teoria vectorial do sinal (1989)
Book
Francisco Correia Velez Grilo; António Manuel E. S. Casimiro; João António Correia Lopes
Telecomunicações e incapacidade (1994)
Book
Stephen Tetzchner; Diamantino Rui da Silva Freitas; Comunidades Europeias. Comissão. Direcção-Geral das

See all (70)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-09-30 at 23:12:33 | Acceptable Use Policy | Data Protection Policy | Complaint Portal