Go to:
Logótipo
Você está em: Start > Publications > View > Annealing-assisted optimization for persistency of afterglow of SrAl2O4:Eu2+/Dy3+ microparticles for forensic detection
Publication

Annealing-assisted optimization for persistency of afterglow of SrAl2O4:Eu2+/Dy3+ microparticles for forensic detection

Title
Annealing-assisted optimization for persistency of afterglow of SrAl2O4:Eu2+/Dy3+ microparticles for forensic detection
Type
Article in International Scientific Journal
Year
2023
Authors
Kumar, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Crista, DMA
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Núñez-Montenegro, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Joaquim C G E Esteves da Silva
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Verma, SK
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: RSC AdvancesImported from Authenticus Search for Journal Publications
Vol. 13
ISSN: 2046-2069
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Z-3E6
Abstract (EN): In the present work, Eu2+/Dy3+ ions doped/co-doped into persistent SrAl2O4 microparticles have been developed through solid-state synthesis followed by homogenization and particle size reduction in a ball milling device. These particles have shown a broad and long-persistent afterglow around the 528 nm wavelength of electromagnetic radiation through a broad excitation at around 400 nm. The luminescence intensity was optimized through the selection of different annealing temperatures in the range of 1100 C-degrees to 1500 C-degrees, with intervals of 100 C-degrees. Several structural and optical characterization techniques, such as XRD, SEM, FTIR, thermogravimetric analysis, and photoluminescence, were utilized to judge the preparation and ability of these particles in possible applications in latent fingermark detection on various difficult surfaces. The persistency and stability of these particles were calculated using a digital lux meter.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 10
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

(Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions - a review (2015)
Another Publication in an International Scientific Journal
Ferreira, CMH; Pinto, ISS; Soares, EV; Helena Soares
Unbiased, complete solar charging of a neutral flow battery by a single Si photocathode (2018)
Article in International Scientific Journal
Kristina Wedege; Dowon Bae; Emil Drazevic; Adélio Mendes; Peter C. K. Vesborg; Anders Bentien
Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation (2017)
Article in International Scientific Journal
Araujo, MP; O.S.G.P. Soares; Fernandes, AJS; Manuel Fernando R Pereira; Cristina Freire
TiO2-coated window for facilitated gas evolution in PEC solar water splitting (2017)
Article in International Scientific Journal
Sérgio Miranda; António Vilanova; Tânia Lopes; Adélio Mendes
The role of surface copper content on biofilm formation by drinking water bacteria (2019)
Article in International Scientific Journal
Inês Gomes; Lúcia C. Simões; Manuel Simões

See all (89)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-11-08 at 23:18:20 | Acceptable Use Policy | Data Protection Policy | Complaint Portal