Abstract (EN):
The accuracy of the state-of-charge (SOC) estimation of lithium batteries affects the battery life, driving performance, and the safety of electric vehicles. This paper presents a SOC estimation method based on the fractional-order square-root unscented Kalman filter (FSR-UKF). Firstly, a fractional second-order Resistor-Capacitance (RC) circuit model of the lithium battery is derived. The accuracy of the parameterized model is verified, revealing its superiority over integer-order standard descriptions. Then, the FSR-UKF algorithm is developed, combining the advantages of the square-root unscented Kalman filter and the fractional calculus. The effectiveness of the proposed algorithm is proven under a variety of operational conditions in the perspective of the root-mean-squared error, which is shown to be below <mml:semantics>1.0%</mml:semantics>. In addition, several experiments illustrate the performance of the FSR-UKF.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
20