Go to:
Logótipo
Você está em: Start > Publications > View > Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs
Publication

Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs

Title
Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs
Type
Another Publication in an International Scientific Journal
Year
2021-12-01
Authors
E. Doutel
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications Without AUTHENTICUS Without ORCID
Journal
Title: MaterialsImported from Authenticus Search for Journal Publications
Final page: 7402
ISSN: 1996-1944
Publisher: MDPI
Other information
Authenticus ID: P-00V-T0A
Abstract (EN): Microbots have been considered powerful tools in minimally invasive medicine. In the last few years, the topic has been highly studied by researchers across the globe to further develop the capabilities of microbots in medicine. One of many applications of these devices is performing surgical procedures inside the human circulatory system. It is expected that these microdevices traveling along the microvascular system can remove clots, deliver drugs, or even look for specific cells or regions to diagnose and treat. Although many studies have been published about this subject, the experimental influence of microbot morphology in hemodynamics of specific sites of the human circulatory system is yet to be explored. There are numerical studies already considering some of human physiological conditions, however, experimental validation is vital and demands further investigations. The roles of specific hemodynamic variables, the non-Newtonian behavior of blood and its particulate nature at small scales, the flow disturbances caused by the heart cycle, and the anatomy of certain arteries (i.e., bifurcations and tortuosity of vessels of some regions) in the determination of the dynamic performance of microbots are of paramount importance. This paper presents a critical analysis of the state-of-the-art literature related to pulsatile blood flow around microbots.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 20
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Review of Tailoring Methods for Joints with Additively Manufactured Adherends and Adhesives (2020)
Another Publication in an International Scientific Journal
Frascio, M; Marques, EAS; Ricardo Carbas; da Silva, LFM; Monti, M; Avalle, M
Production of TiC-MMCs Reinforcements in Cast Ferrous Alloys Using In Situ Methods (2021)
Another Publication in an International Scientific Journal
Aida B. Moreira; Laura M. M. Ribeiro; Manuel F. Vieira
Polymer-Matrix Composites: Characterising the Impact of Environmental Factors on Their Lifetime (2023)
Another Publication in an International Scientific Journal
Barreira-Pinto, R; Carneiro, R; Miranda, JM; Rui Miranda Guedes
Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing (2021)
Another Publication in an International Scientific Journal
Macedo, AS; Mendes, F; Filipe, P; Salette Reis; Fonte, P
Magnetic Nanomaterials as Contrast Agents for MRI (2020)
Another Publication in an International Scientific Journal
Caspani, S; Magalhaes, R; araujo, j. p.; Sousa, CT

See all (140)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-11-08 at 20:12:23 | Acceptable Use Policy | Data Protection Policy | Complaint Portal