Go to:
Logótipo
Você está em: Start > Publications > View > Accurate Motion Control of a Pneumatic Linear Peristaltic Actuator
Publication

Accurate Motion Control of a Pneumatic Linear Peristaltic Actuator

Title
Accurate Motion Control of a Pneumatic Linear Peristaltic Actuator
Type
Article in International Scientific Journal
Year
2020
Authors
João Pedro Falcão Carneiro
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Bravo Pinto, JB
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Fernando Gomes Almeida
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: ActuatorsImported from Authenticus Search for Journal Publications
Vol. 9
Final page: 63
Publisher: MDPI
Indexing
Other information
Authenticus ID: P-00S-MKK
Abstract (EN): Pneumatic linear peristaltic actuators can offer some potential advantages when compared with conventional ones. The low cost, virtually unlimited stroke and easy implementation of curved motion profiles are among those benefits. On the downside, these actuators suffer high mechanical stress that can lead to short service life and increased leakage among chambers during the actuator lifetime. One way to cope with this problem is to impose the force-instead of the displacement-between rollers, as this has been shown to improve the endurance of the hose while reducing leakage during the actuator lifetime. This paper presents closed control loop results using such a setup. Previous studies with linear peristaltic actuators have revealed that, although it is possible to reach zero steady state error to constant references with closed loop control, the dynamic response obtained is very slow. This paper is mainly focused on this topic, namely on the development of several control laws to improve the dynamic performance of the system while avoiding limit cycles. The new developed control law leads to an average time of 1.67 s to reach a 0.1 mm error band in an experiment consisting of a series of 16 steps ranging from 0.02 to 0.32 m in amplitude.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Model Identification and Control of a Buoyancy Change Device (2023)
Article in International Scientific Journal
João Pedro Falcão Carneiro; Pinto, JB; Fernando Gomes Almeida; Nuno Cruz
Improving Endurance of Pneumatic Linear Peristaltic Actuators (2020)
Article in International Scientific Journal
João Pedro Falcão Carneiro; Bravo Pinto, J; Fernando Gomes Almeida; Fateri, M
Electrohydraulic and Electromechanical Buoyancy Change Device Unified Vertical Motion Model (2023)
Article in International Scientific Journal
João Pedro Falcão Carneiro; Freitas, J; Fernando Gomes Almeida; Nuno Cruz
Design, Modeling, and Control of a Single Leg for a Legged-Wheeled Locomotion System with Non-Rigid Joint (2021)
Article in International Scientific Journal
Vítor H. Pinto; José Gonçalves; Paulo Gomes da Costa
Design and Experimental Tests of a Buoyancy Change Module for Autonomous Underwater Vehicles (2022)
Article in International Scientific Journal
João Pedro Falcão Carneiro; Pinto, JB; Fernando Gomes Almeida; Nuno Cruz

See all (7)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-07-26 at 09:11:04 | Acceptable Use Policy | Data Protection Policy | Complaint Portal