Go to:
Logótipo
Você está em: Start > Publications > View > Viscous flow through microfabricated axisymmetric contraction/expansion geometries
Publication

Viscous flow through microfabricated axisymmetric contraction/expansion geometries

Title
Viscous flow through microfabricated axisymmetric contraction/expansion geometries
Type
Article in International Scientific Journal
Year
2020
Authors
Pimenta, F
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Toda Peters, K
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Shen, AQ
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Alves, MA
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Haward, SJ
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Experiments in FluidsImported from Authenticus Search for Journal Publications
Vol. 61
ISSN: 0723-4864
Publisher: Springer Nature
Indexing
Other information
Authenticus ID: P-00S-NKA
Abstract (EN): We employ a state-of-the-art microfabrication technique (selective laser-induced etching) to fabricate a set of axisymmetric microfluidic geometries featuring a 4:1 contraction followed by a 1:4 downstream expansion in the radial dimension. Three devices are fabricated: the first has a sudden contraction followed by a sudden expansion, the second features hyperbolic contraction and expansion profiles, and the third has a numerically optimized contraction/expansion profile intended to provide a constant extensional/compressional rate along the axis. We use micro-particle image velocimetry to study the creeping flow of a Newtonian fluid through the three devices and we compare the obtained velocity profiles with finite-volume numerical predictions, with good agreement. This work demonstrates the capability of this new microfabrication technique for producing accurate non-planar microfluidic geometries with complex shapes and with sufficient clarity for optical probes. The axisymmetric microfluidic geometries examined have potential to be used for the study of the extensional properties and non-linear dynamics of viscoelastic flows, and to investigate the transport and deformation dynamics of bubbles, drops, cells, and fibers. Graphic abstract
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 16
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Viscous flow through microfabricated hyperbolic contractions (2007)
Article in International Scientific Journal
Monica Neves N Oliveira; Manuel A Alves; Fernando T Pinho; Gareth H McKinley
TURBULENT EXPANSION FLOW OF LOW-MOLECULAR-WEIGHT SHEAR-THINNING SOLUTIONS (1995)
Article in International Scientific Journal
CASTRO, OS; F. T. Pinho
TURBULENT EXPANSION FLOW OF LOW-MOLECULAR-WEIGHT SHEAR-THINNING SOLUTIONS (1995)
Article in International Scientific Journal
CASTRO, OS; F. T. Pinho
Turbulent characteristics of shear-thinning fluids in recirculating flows (2000)
Article in International Scientific Journal
A. S. Pereira; Fernando Tavares de Pinho
Turbulent characteristics of shear-thinning fluids in recirculating flows (2000)
Article in International Scientific Journal
A. S. Pereira; Fernando Tavares de. Pinho

See all (21)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-09-02 at 05:22:53 | Acceptable Use Policy | Data Protection Policy | Complaint Portal