Go to:
Logótipo
Você está em: Start > Publications > View > GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects
Publication

GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects

Title
GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects
Type
Article in International Scientific Journal
Year
2020
Authors
Henriques, D
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Goncalves, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Carlos Sousa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Camotim, D
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 150
ISSN: 0263-8231
Publisher: Elsevier
Other information
Authenticus ID: P-00R-W6M
Abstract (EN): In this paper, a GBT-based finite element previously developed by the authors for steel-concrete composite beams, which incorporates cross-section deformation (including shear lag effects) and concrete creep, is enhanced by including concrete cracking effects. In particular, a fixed smeared crack model with two orthogonal cracks is consistently combined with creep using a strain decomposition approach. As in the previous finite element, creep is modelled using a linear visco-elastic law and a Dirichlet series expansion of the creep function. A set of illustrative numerical examples is presented, to show the capabilities of the proposed element. For comparison purposes, shell finite element model results are provided. It is demonstrated that the proposed element makes it possible to obtain very accurate results with a relatively small number of cross-section deformation modes (cross-section DOFs) and finite elements, thus leading to significant computational savings with respect to shell element models.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 17
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Residual stresses in cold-formed steel members: Review of measurement methods and numerical modelling (2021)
Another Publication in an International Scientific Journal
Díaz, A; Cuesta, II; Alegre, JM; Abilio M P De Jesus; Manso, JM
The effect of curvature in nonlinear supersonic flutter of panels with adjacent bays (2021)
Article in International Scientific Journal
Myrella V. Cabral; Flávio D. Marques; António J. M. Ferreira
Nonlinear finite element aeroelastic analysis of multibay panels in supersonic flow regime (2017)
Article in International Scientific Journal
Pacheco, DRQ; Marques, FD; Ferreira, AJM
Multi-scale modeling for prediction of residual stress and distortion in Ti-6Al-4V semi-circular thin-walled parts additively manufactured by laser powder bed fusion (LPBF) (2023)
Article in International Scientific Journal
José César de Sá; Manuel Jimenez Abarca; Roya Darabi; Parente, MPL; Ana Reis
Joining magnesium and aluminum alloy sheets by a novel hole hemming process (2023)
Article in International Scientific Journal
Pereira, JAC; Kasaei, MM; Ricardo Carbas; Marques, EAS; Lim, H; da Silva, LFM

See all (18)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-10-07 at 02:50:01 | Acceptable Use Policy | Data Protection Policy | Complaint Portal