Abstract (EN):
Ordinal classification is a form of multiclass classification for which there is an inherent order between the classes, but not a meaningful numeric differerence between them. The performance of such classifiers is usually assessed by measures appropriate for nominal classes or for regression. Unfortunately, these do not account for the true dimension of the error. The goal of this work is to show that existing measures for evaluating ordinal classification models surffer from a number of important shortcomings. For this reason, we propose an alternative measure defined directly in the confusion matrix. An error coefficient appropriate for ordinal data should capture how much the result diverges from the ideal prediction and how "inconsistent" the classifier is in regard to the relative order of the classes. The proposed coefficient results from the observation that the performance yielded by the Misclassification Error Rate coefficient is the benefit of the path along the diagonal of the confusion matrix. We carry out an experimental study which confirms the usefulness of the novel metric.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
23