Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > EGFR Assessment in Lung Cancer CT Images: Analysis of Local and Holistic Regions of Interest Using Deep Unsupervised Transfer Learning

EGFR Assessment in Lung Cancer CT Images: Analysis of Local and Holistic Regions of Interest Using Deep Unsupervised Transfer Learning

Título
EGFR Assessment in Lung Cancer CT Images: Analysis of Local and Holistic Regions of Interest Using Deep Unsupervised Transfer Learning
Tipo
Artigo em Revista Científica Internacional
Ano
2021
Autores
Silva, F
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Pereira, T
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Morgado, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Frade, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Mendes, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Freitas, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Negrao, E
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
De Lima, BF
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Da Silva, MC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Madureira, AJ
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ramos, I
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Hespanhol, V
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Costa, JL
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Cunha, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Revista
Título: IEEE AccessImportada do Authenticus Pesquisar Publicações da Revista
Vol. 9
ISSN: 2169-3536
Editora: IEEE
Outras Informações
ID Authenticus: P-00T-S3F
Abstract (EN): Statistics have demonstrated that one of the main factors responsible for the high mortality rate related to lung cancer is the late diagnosis. Precision medicine practices have shown advances in the individualized treatment according to the genetic profile of each patient, providing better control on cancer response. Medical imaging offers valuable information with an extensive perspective of the cancer, opening opportunities to explore the imaging manifestations associated with the tumor genotype in a non-invasive way. This work aims to study the relevance of physiological features captured from Computed Tomography images, using three different 2D regions of interest to assess the Epidermal growth factor receptor (EGFR) mutation status: nodule, lung containing the main nodule, and both lungs. A Convolutional Autoencoder was developed for the reconstruction of the input image. Thereafter, the encoder block was used as a feature extractor, stacking a classifier on top to assess the EGFR mutation status. Results showed that extending the analysis beyond the local nodule allowed the capture of more relevant information, suggesting the presence of useful biomarkers using the lung with nodule region of interest, which allowed to obtain the best prediction ability. This comparative study represents an innovative approach for gene mutations status assessment, contributing to the discussion on the extent of pathological phenomena associated with cancer development, and its contribution to more accurate Artificial Intelligence-based solutions, and constituting, to the best of our knowledge, the first deep learning approach that explores a comprehensive analysis for the EGFR mutation status classification.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 10
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Understanding Business Models for the Adoption of Electric Vehicles and Charging Stations: Challenges and Opportunities in Brazil (2023)
Outra Publicação em Revista Científica Internacional
Bitencourt, L; Dias, B; Soares, T; Borba, B; Quirós Tortós, J; Costa, V
Structuring Complex System for Digital Twin Development: A Systematic Scoping Review (2025)
Outra Publicação em Revista Científica Internacional
Ghanbarifard, R; Almeida, AH; Américo Azevedo
Space Imaging Point Source Detection and Characterization (2024)
Outra Publicação em Revista Científica Internacional
Ribeiro, FSF; P. J. V. Garcia; Silva, M; Jaime S Cardoso
Key Indicators to Assess the Performance of LiDAR-Based Perception Algorithms: A Literature Review (2023)
Outra Publicação em Revista Científica Internacional
José Machado da Silva; K. Chiranjeevi; Correia, M. V.
IEEE ACCESS SPECIAL SECTION EDITORIAL: SOFT COMPUTING TECHNIQUES FOR IMAGE ANALYSIS IN THE MEDICAL INDUSTRY - CURRENT TRENDS, CHALLENGES AND SOLUTIONS (2018)
Outra Publicação em Revista Científica Internacional
D. Jude Hemanth; Lipo Wang; João Manuel R. S. Tavares; Fuqian Shi; Vania Vieira Estrela

Ver todas (116)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-12-03 às 21:52:39 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico